Extending Bridge++ Lattice Simulation Code
to Vector Processors

T. Aoyama (KEK), I.Kanamori (RIKEN), H. Matsufuru (KEK), Y. Namekawa (YITP)
for Bridge++ project

August 4-7, 2020
Asia-Pacific Symposium for Lattice Field Theory (APLAT 2020)

Outline

* Bridge++ Project for General-purpose Code Set of
Lattice Gauge Theory Simulations

* Overview of NEC SX-Aurora TSUBASA system
* Porting and Optimizing Bridge++ to SX-Aurora

* Summary

Bridge++: A Lattice QCD Code Set
* Overview Tﬁﬁiﬁ?@ﬁ]})c@:@' 1

« General-purpose code set for http://Bridoe Yo/ \Bi%-tode/
simulations of Lattice Gauge Theory.

* Object-oriented design using C++.
* Development policy:
* Readable, Extendable, Portable, and High-performance.

* History

* Launched in 2009, first public release in 2012.

* Latest version: 1.5.4 (March 2020).

* Adopted in research works, acknowledged in 48 papers.
* Members

* Y. Akahoshi, S. Aoki, Y. Namekawa (YITP), T. Aoyama, H. Matsufuru
(KEK), I. Kanamori (RIKEN), K. Kanaya, Y. Taniguchi (Tsukuba),
H. Nemura (RCNP), and contributors.

Bridge++: A Lattice QCD Code Set

* Development of Bridge++
* Provides a tool set as a library for User applications, including:
* Various Fermion and Gauge actions
* Linear Solver algorithms, Linear algebraic operations
 Simulation algorithms, Random numbers, I/O manipulations

* Target platforms
* “core” library:
* scalar processors, multicore cluster systems
* OpenMP + MPI for parallelization
* Extensions:
* system-specific implementations
* GPUs w/ OpenCL, OpenACC S. Motoki (2015), H. Matsufuru et al (2015)

* Manycore processors and wide SIMD instructions,
e.g. KNL, Intel Skylake |. Kanamori and H. Matsufuru (2017)

3

* Vector processors

Bridge++: A Lattice QCD Code Set

+ Platform-specific extensions: “alternative” to core library
« “core” library
* Fixed data type (double precision) and layout (AoS-type).
- “alternative”
 Arbitrary data type and layout.
» Allows code structure with e.g. directives and separate kernels.

* Drop-in replacement of “core” library modules
» Keeps class structure same between core and alternatives.
 Sets interface layer.
* e.g. “propagator calculation class” that calls Dirac op and Solver

» Data layout conversion built-in.

* Need to implement performance-aware part for each platform.
Algorithms common to platforms are implemented as C++ templates

for code reuse.

SX-Aurora TSUBASA: Overview

* Newest product of NEC SX series

* Processors on PCle card form factor, equipped
in Xeon servers via PCle Gen3.

» Vector Engine (VE)
» Vector processor with 8 cores.
* 64 vector registers of 16 kbit each.

« HBM2 memory 6¢ch provides 1.2 TB/s bandwidth.

cores 8 28 5120
DP Performance 2.45 TFlops 2.42 TFlops 7.8 TFlops
Memory Capacity 48/24 GB uptol1TB 32/16 GB
Memory Bandwidth 1.2 TB/s 140 GB/s 900 GB/s
Memory Type HBM2 DDR4 HBM2
Cache 16 MB shared 38.5 MB 6 MB
B/F 0.5 0.06 0.12

* Vector Host (VH)
» Xeon server accommodates 8 VEs.

* VHs interconnected by Infiniband EDR: up to 64 VEs in a Rack.

SX-Aurora TSUBASA

* Programming Model
* “VE execution model”
* Program runs on VE, as if on an ordinary node.
 System calls e.g. I/O are offloaded to VH underneath.
* cf. GPUs: offload tasks from host program to devices.
* Ordinary C/C++/Fortran programs run just by recompilation.
* Directives to control in detail.
* Software Environment

* NEC C/C++/Fortran Compilers with auto vectorization.
OpenMP supported. MPI library provided.

* BLAS, LAPACK, and other optimized mathematical libraries.

* Profiler and Debugger.

* LLVM-based compiler also being developed.
* Intrinsics available. Recent release supports auto-vectorization.
 cf. LLVM-VE-RV project on github.

SX-Aurora TSUBASA

* Related work:

« “Lattice QCD on a novel vector architecture”, B. Huth, N. Meyer, T.
Wittig, LATTICE2019, arXlv:2001.07557[cs.DC].

* Apply Grid Lattice QCD framework designed for processors
with SIMD instructions to large vector registers of length
128x2X bits.

Porting and Optimizing Bridge++

* Strategy
* Vectorization along site-loop.
* Rely on compiler’s auto-vectorization.
* Promote loop unrolling for color/spin d.o.f. using constants.
* Switching Data Layout

» “core” library: Array of Structure (AoS) layout.

- site d.o.f. packed innermost. _

x=0 x=1 X=2

* Vector library: Structure of Array (SoA) layout. Heites
«—p

* contiguous w.r.t. site loop index. - -
X= ! 1 %= 2 X= 0 1% 2 x= O X=2

=1
core library Vector library
(AoS) (SoA)
1.07 GFlops 41.7 GFlops
on 1 core

Porting and Optimizing Bridge++

* Parallelization within VE
* Using 8 cores in a VE via flat-MPI.

* Performance:

Single core 1 VE (8 cores)
16x16x8x8 16x16x16x32 /[1,1,2,4]

Wilson mult 41.7 GFlops 81.8 GFlops
peak performance 308 GFlops 2.42 TFlops
theoretical bandwidth 409 GB/s 1.2 TB/s
expected from B/F ~ 2.2 180 GFlops 540 GFlops
* Profiling:

* Vector instruction ratio: ~99.90 %
* Average Vector Length: 256.0 —>seems well vectorized.

Further optimization

Core || Core
268.8 GF 268.8 GF

* Memory subsystem overview

Core || Core
268.8 GF 268.8 GF

* 6 HBM2 modules connected.

8 channels on each module.

» 128bits interface x 8ch
X 1.6GHz x 6HBM2 = 1.2 TB/s

128 byte-cells within module.
* classified in 32 banks Block diagram of a vector processor
* access to contiguous 128 bytes will be most effective

VE equips 16 MB LLC shared by 8 cores.
» connected by NOC (network on chip).
* bandwidth between LLC and core = 409.6 GB/s.

Core || Core
268.8 GF 268.8 GF

< 2
S S
IS S
¥ U

2 E

i <
I 1
"g @

3 3

Core || Core
2688GF | | 2688GF

Bank conflict occurs by simultaneous access with 192KB strides
» 128bytes x 6HBM2 x 8ch x 32banks (round-robin) = 192KB

- - - for (i=0; i<n; ++i) {
Further optimization a0[i] = O[] + v * cO[il;
al[i] = bl[i] + v * cl[i];

» STREAM benchmark with multiple streams. az[i] = b2[1] + v * c2[1];

500 T T T T T T T T 100% 500 T T T T 100%
192 KB stride
400 |- MW 4 80 400 | W | 4 80
) MWWM%NM
B 300} 1 60 300 [1 60
<
e}
3
el
=
3
B 200 - 40 200 - 40
=
100 |- 1 stream | 100 |- 4 streams |z
/ILLC Hit (%)
0 | | | | | | | | 0 0 | | | | | | | | | 0
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

L (length n =L3)

* Insert padding of appropriate size to avoid bank conflicts.

* Padding size to be chosen by examining memory access pattern.

x 1.5 for Wilson mult.

cf. Memory First: A performance tuning strategy focusing on memory access patterns,
N. Ebata, R. Egawa, Y. Isobe, R. Takaki, H. Takizawa, Research Poster at ISC2019.

Further optimization

* Vector processing unit overview (nszucton surtej

(Renaming)

=\
U
=
=)
N
=)
N
)
=)
\g\\'
N
)

[\ Forwarding MUXs

‘@

from WikiChip

* 64 vector registers,
vector length 256 elem. of 8B. (5<mu'mo)

» 32 vector pipelines (VPP).

* 1 vector instruction execute
256 arith ops with 8 clock cycles.

* 6 execution pipes:
* 3 FMAs, 2 ALUs, 1 DIV/SQRT.

* Invoke vector instructions: two-fold loops as an idiom.
* Inner vectorized loop (long enough i.e. 2256 to fill vector registers)

* apply blocking to inner loop in unit of vector length (VL=256),
and specify compiler directives for optimization.

* Outer loop (maybe further parallelized over threads)

(x,y,2,t) = (x,y) and (z,t) for Wilson mult

Further optimization

* Wilson mult performance evolution:

core library (AoS) 1.07 GFlops
Vector library (SoA) 41.7 GFlops 81.8 GFlops
insert padding 133 GFlops
two-fold I.oop, b.Iocki.ng, ~200 GFlops
vector register directives
pack/unpack revised 70.1 GFlops 271.5 GFlops
peak performance 308 GFlops 2.42 TFlops

* About 20% (single core), or 10% (1 VE) of peak performance obtained.

* Compared to the expected performance from memory bandwidth,
further improvement may be possible.

Further optimization

* Wilson mult performance evolution:
» Multiple VEs for 323x8N with N up to 128 VEs.

100000 ————————

10000 — 323X8N

1000

mult performance [GFlops]

100

10 Y

Weak Scaling

_number of VEs

Preliminary

23.7 TElops

0.1 1

10 100

1000

* Shows better weak scaling. Performance relies on volume and
communication overhead. Further investigation is needed.

Summary

* Extension of Bridge++, a general-purpose code set for lattice
simulations, to vector processors is being carried out.
Strategy for platform-specific extension is overviewed.

* Data layout significantly affects the performance. Data should be
aligned contiguously along site loop index (SoA format), efficient for
load into vector registers.

* Further elaborations on memory access pattern, e.g. including
padding to bank conflict improve performance significantly.

* An idiom to write vector loops will be two-fold loops, vectorized
inner loop and outer loop. Further optimization to be applied
e.g. loop blocking and compiler directives.

* A good weak scaling is observed up to 128 VEs, though further
investigation and improvement will be needed.

