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What is a neural network, really?

Could it be..



What is a neural network, really?

Could it be..

..an observable in a statistical system?



Machine Learning

Supervised Machine Learning for Phase Identification

In a supervised framework we can train a machine learning algorithm on a set of training
data, to learn a function f(-) that separates the symmetric and the broken-symmetry
phases of a system.



Machine Learning:

Training of a convolutional neural network on

the Ising model:
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Machine Learning:

CONFIGURATION

Predicting the phase of a configuration:
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Machine Learning:

Predicting the phase of a configuration:
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The configuration is

importance-sampled so it has an

attached Boltzmann weight.

f(x)

The output is calculated on an
importance-sampled configuration
so it must have the same
Boltzmann weight.



Machine Learning:

The output probability is an observable in the system:

The output probability can therefore be reweighted to different parameters through
histogram reweighting (e.g. inverse temperatures in the Ising model):
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Machine Learning:
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Training was conducted below B=0.41 and above p=0.47
Red line: obtained using reweighting from a single dataset at B= 0.438 (filled point)
Empty points: Actual calculations of the neural network on independent Monte Carlo datasets.

Does it look like an effective order parameter?



Phase Transitions:

When 3=3 and &~L finite size effects dominate and fluctuations, such as the
magnetic susceptibility, have maximum values in the critical region:

X = BV ((m?) — (m)?)

These maximum values converge to the inverse critical temperature in the thermodynamic
limit:

lim BX = B,
L—oo
Question: How do the fluctuations of the neural network output probability behave?

0P = BV ((P?) — (P)?)
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Phase Transitions:

6P
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Phase Transitions:

Results obtained by quantities derived entirely from the neural network
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Machine Learning

Discovering Phase Transitions

The function f(-) was learned on configurations of the Ising model.
f(x) can successfully predict the phase of Ising configurations x.
But what happens if we give configurations x’ of a different system as input to the Ising-learned

function f(-)? Can we accurately separate phases in different systems? Can we discover a phase
transition through f(x’)?
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Machine Learning

POTTS

Equivalently:
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<f>

Machine Learning

Potts models:
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Results obtained through a function f learned exclusively on the Ising model.
No knowledge about the presence of a phase transition in the new system is required.
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Machine Learning

<f>

¢ scalar field theory:
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Results obtained through a function f learned exclusively on the Ising model.

No knowledge about the presence of a phase transition in the new system is required.
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Machine Learning

Further insights on the results:
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Machine Learning

Further insights on the results:
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Similar variables get spiked for configurations in disordered phase (top) and ordered phase (bottom),

irrespective of the system. 18



Machine Learning

¢ scalar field theory:

We didn’t include any knowledge about the presence of a phase transition in this system
so we have now obtained the knowledge of its critical region. We can therefore study it.
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Machine Learning
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TABLE II. Critical ,LLg for fixed A\, = 0.7 and critical expo-
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Discussion

1. We can discover phase transitions using functions learned on simple well-studied
systems.

2. We can build effective order parameters with no explicit information introduced about
the Hamiltonian during the training of the neural network. The approach can be used
when an order parameter isn’t known.

3. We can use reweighting on machine-learning devised observables to explore the
parameter space and increase precision during infinite-volume limit calculations.

Presentation based on:

e D. Bachtis, G. Aarts, and B. Lucini, Extending Machine Learning Classification Capabilities
with Histogram Reweighting, arXiv:2004.14341.

e D. Bachtis, G. Aarts, and B. Lucini, A Mapping of Distinct Phase Transitions to a Neural
Network, arXiv:2007.00355.
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