Lattice study of rotating gluodynamics

V.V. Braguta

MISIS, JINR

6 August, 2020
In collaboration with

- A.Yu. Kotov
- D.D. Kuznedelev
- A.A. Roenko
QGP is created with non-zero angular momentum in non-central collisions
Rotation of QGP in heavy ion collisions

Hydrodynamic simulations (arxiv:1602.06580)

- Au-Au: left $\sqrt{s} = 200$ GeV, right $b = 7$ fm,
- $\Omega \sim 20$ MeV ($v \sim c$ at distances 7 fm)
- Relativistic rotation of QGP
Rotation of QGP in heavy ion collisions

Hydrodynamic simulations (arxiv:1602.06580)

- **Au-Au**: left $\sqrt{s} = 200$ GeV, right $b = 7$ fm,
- $\Omega \sim 20$ MeV ($v \sim c$ at distances 7 fm)
- Relativistic rotation of QGP

How relativistic rotation influences QCD?
Rotating QGP at thermodynamic equilibrium

- At the equilibrium the system rotates with some Ω
- The study is conducted in the reference frame which rotates with QCD matter
- QCD in external gravitational field
Study of rotating QGP

- Rotating QGP at thermodynamic equilibrium
 - At the equilibrium the system rotates with some Ω
 - The study is conducted in the reference frame which rotates with QCD matter
 - QCD in external gravitational field

- Boundary conditions are very important!
Recent works

- M.N. Chernodub, Shinya Gongyo, JHEP 01 (2017) 136
- Hui Zhang, Defu Hou, Jinfeng Liao, e-Print: 1812.11787 [hep-ph]

Common features

- The studies are carried out in NJL (chiral transition)
- Critical temperature of the chiral phase transition drops with angular velocity
- Confinement/deconfinement transition was not considered
Details of the simulations

- Gluodynamics is studied at thermodynamic equilibrium in external gravitational field

- The metric tensor

\[g_{\mu \nu} = \begin{pmatrix}
1 - r^2 \Omega^2 & \Omega y & -\Omega x & 0 \\
\Omega y & -1 & 0 & 0 \\
-\Omega x & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} \]

- Geometry of the system: \(N_t \times N_z \times N_x \times N_y = N_t \times N_z \times N_s^2 \)
Details of the simulations

- Partition function (\hat{H} is conserved)

\[
Z = \text{Tr} \exp \left[-\beta \hat{H} \right]
\]

- Euclidean action

\[
S_G = -\frac{1}{2g_{YM}^2} \int d^4x \sqrt{g_E} g_\mu^\nu g_\alpha^\beta F^{(a)}_{\mu\alpha} F^{(a)}_{\nu\beta}
\]

\[
S_G = \frac{1}{2g_{YM}^2} \int d^4x \text{Tr} \left[(1 - r^2\Omega^2) F^{a}_{xy} F^{a}_{xy} + (1 - y^2\Omega^2) F^{a}_{xz} F^{a}_{xz} +
\right.
\]

\[
\left. + (1 - x^2\Omega^2) F^{a}_{yz} F^{a}_{yz} + + F^{a}_{x\tau} F^{a}_{x\tau} + F^{a}_{y\tau} F^{a}_{y\tau} + F^{a}_{z\tau} F^{a}_{z\tau} -
\right.
\]

\[
\left. - 2iy\Omega(F^{a}_{xy} F^{a}_{y\tau} + F^{a}_{xz} F^{a}_{z\tau}) + 2ix\Omega(F^{a}_{yx} F^{a}_{x\tau} + F^{a}_{yz} F^{a}_{z\tau}) - 2xy\Omega^2 F^{a}_{xz} F^{a}_{zy} \right]
\]
Details of the simulations

- *Ehrenfest–Tolman effect*: In gravitational field the temperature is not constant in space at thermal equilibrium

\[T(r)\sqrt{g_{00}} = \text{const} = 1/\beta \]
Details of the simulations

- **Ehrenfest–Tolman effect:** In gravitational field the temperature is not constant in space at thermal equilibrium
 \[
 T(r) \sqrt{g_{00}} = \text{const} = 1/\beta
 \]

- Rotation effectively heats the system from the rotation axis to the boundaries \(T(r) > T(r = 0) \)
Details of the simulations

- **Ehrenfest–Tolman effect**: In gravitational field the temperature is not constant in space at thermal equilibrium

 \[T(r) \sqrt{g_{00}} = \text{const} = 1/\beta \]

- Rotation effectively heats the system from the rotation axis to the boundaries \(T(r) > T(r = 0) \)

- One could expect that rotation decreases the critical temperature
Details of the simulations

- **Ehrenfest–Tolman effect:** In gravitational field the temperature is not constant in space at thermal equilibrium

 \[T(r) \sqrt{g_{00}} = \text{const} = 1/\beta \]

- Rotation effectively heats the system from the rotation axis to the boundaries \(T(r) > T(r = 0) \)

- One could expect that rotation decreases the critical temperature

- We use the designation \(T = T(r = 0) = 1/\beta \)
Details of the simulations

Boundary conditions

- **Periodic b.c.:**
 - \(U_{x,\mu} = U_{x+N_i,\mu} \)
 - Not appropriate for the field of velocities of rotating body

- **Dirichlet b.c.:**
 - \(U_{x,\mu} \big|_{x \in \Gamma} = 1, \quad A_\mu \big|_{x \in \Gamma} = 0 \)
 - Violate \(Z_3 \) symmetry
 - Not appropriate for the field of velocities of rotating body

- **Neumann b.c.:**
 - \(U_P \big|_{P \in \Gamma} = 1, \quad F_{\mu\nu} \big|_{x \in \Gamma} = 0 \)
Details of the simulations

Boundary conditions

- **Periodic b.c.:**
 - \(U_{x,\mu} = U_{x+N_i,\mu} \)
 - Not appropriate for the field of velocities of rotating body

- **Dirichlet b.c.:**
 - \(U_{x,\mu}|_{x\in\Gamma} = 1, \quad A_\mu|_{x\in\Gamma} = 0 \)
 - Violate \(Z_3 \) symmetry
 - Not appropriate for the field of velocities of rotating body

- **Neumann b.c.:**
 - \(U_P|_{P\in\Gamma} = 1, \quad F_{\mu\nu}|_{x\in\Gamma} = 0 \)
Details of the simulations

Sign problem

\[S_G = \frac{1}{2g_{YM}^2} \int d^4x \text{Tr} \left[(1 - r^2\Omega^2) F_{xy}^a F_{xy}^a + (1 - y^2\Omega^2) F_{xz}^a F_{xz}^a + \\
+ (1 - x^2\Omega^2) F_{yz}^a F_{yz}^a + F_{x\tau}^a F_{x\tau}^a + F_{y\tau}^a F_{y\tau}^a + F_{z\tau}^a F_{z\tau}^a - \\
- 2iy\Omega(F_{xy}^a F_{y\tau}^a + F_{xz}^a F_{z\tau}^a) + 2ix\Omega(F_{yx}^a F_{x\tau}^a + F_{yz}^a F_{z\tau}^a) - 2xy\Omega^2 F_{xz}^a F_{zy}^a \right] \]

- The Euclidean action has imaginary part (sign problem)
- Simulations are carried out at imaginary angular velocities \(\Omega \rightarrow i\Omega_I \)
- The results are analytically continued to real angular velocities
- This approach works up to sufficiently large \(\Omega \) (\(\Omega < 50 \text{ MeV} \))
Details of the simulations

The critical temperature

- Polyakov line

\[L = \left\langle \text{Tr} \mathcal{T} \exp \left[ig \int_{[0, \beta]} A_4 \, dx^4 \right] \right\rangle \]

- Susceptibility of the Polyakov line

\[\chi = N_s^2 N_z \left(\langle |L|^2 \rangle - \langle |L| \rangle^2 \right) \]
Results of the calculation

Volume dependence of the susceptibility

- Periodic b.c.: $\sim V$
- Dirichlet b.c.: $\sim \text{const}$
- Neumann b.c.: $\sim V$
Results of the calculation

Volume dependence of the susceptibility

- Periodic b.c.: $\sim V$
- Dirichlet b.c.: $\sim \text{const}$
- Neumann b.c.: $\sim V$

Rotation does not modify the order of the phase transition
Results of the calculation

- The results can be well described by the formula \((C_2 > 0)\)
 \[
 \frac{T_c(Ω_I)}{T_c(0)} = 1 - C_2 Ω_I^2 \Rightarrow \frac{T_c(Ω)}{T_c(0)} = 1 + C_2 Ω^2
 \]

- The critical temperature rises with angular velocity

- The results weakly depend in lattice spacing and the volume in z-direction
Dependence on the transverse size

The results can be well described by the formula

\[
\frac{T_c(\Omega)}{T_c(0)} = 1 - B_2 v_I^2, \quad v_I = \Omega_I (N_s - 1) a / 2, \quad C_2 = B_2 (N_s - 1)^2 a^2 / 4
\]

- **Periodic b.c.:** \(B_2 \sim 1.3 \)
- **Dirichlet b.c.:** \(B_2 \sim 0.3 \)
- **Neumann b.c.:** \(B_2 \sim 0.5 \)
Conclusion

- We have carried out lattice study of how relativistic rotation influences confinement/deconfinement transition.
- Critical temperature of the confinement/deconfinement transition rises with Ω.
- Critical temperature of the chiral transition drops with Ω.
- One needs to include dynamical quarks to see who wins.
We have carried out lattice study of how relativistic rotation influences confinement/deconfinement transition. Critical temperature of the confinement/deconfinement transition rises with Ω. Critical temperature of the chiral transition drops with Ω. One needs to include dynamical quarks to see who wins.

THANK YOU!