QCD Equation of State
in external magnetic field and at finite baryon density

Victor V. Braguta, Natalia V. Kolomoyets, Andrey Yu. Kotov
Joint Institute for Nuclear Research, Russia

Nikita Yu. Astrakhantsev
Universität Zürich, Switzerland

Alexander A. Nikolaev
Department of Physics, College of Science, Swansea University, Great Britain

APLAT 2020

August 4, 2020
Motivation

External magnetic field influences phase diagram!

High density & Strong magnetic field

Early Universe

Neutron stars

Heavy Ion Collisions
Thermodynamics on the lattice

\[p = -\frac{\Omega}{V} = \frac{T}{V} \ln Z \quad \leftarrow \text{cannot be measured directly} \]

Derivatives of \(p \) can be measured!

\[n_q = \frac{N_q}{V} = \frac{\partial p}{\partial \mu_q} \quad \text{– quark number density} \]

\[n_q = \frac{T}{V} \cdot \frac{1}{Z} \cdot \frac{\partial Z}{\partial \mu_q} = -\frac{T}{V} \cdot \frac{1}{Z} \int \mathcal{D}[U] \mathcal{D}[\psi, \bar{\psi}] \left(\frac{\partial S}{\partial \mu_q} \right) e^{-S(\psi, \bar{\psi}, U)} = -\frac{T}{V} \left\langle \frac{\partial S}{\partial \mu_q} \right\rangle \]

\[\frac{p}{T^4} = c_0(T) + c_2(T) \left(\frac{\mu_B}{T} \right)^2 + c_4(T) \left(\frac{\mu_B}{T} \right)^4 + c_6(T) \left(\frac{\mu_B}{T} \right)^6 + \mathcal{O}(\mu_B^8) \]

\[\frac{n}{\mu_B T^2} = \frac{T}{\mu_B} \cdot \frac{d(p/T^4)}{d(\mu_B/T)} = 2c_2 + 4c_4 \left(\frac{\mu_B}{T} \right)^2 + 6c_6 \left(\frac{\mu_B}{T} \right)^4 \quad \leftarrow \text{coefficients can be found from fit} \]

\(\mu_B = \mu_u + 2\mu_d \)
\(\mu_Q = \mu_u - \mu_d \)
\(\mu_S = \mu_d - \mu_s \)

\[n_B = (n_u + n_d + n_s)/3 \]
\[n_Q = (2n_u - n_d - n_s)/3 \]
\[n_S = -n_s \]

\[\langle n_S \rangle = 0, \quad \langle n_Q \rangle = 0.4 \langle n_B \rangle \]

Calculation of \(c_0 \):

G. S. Bali et al., JHEP 08, 177 (2014) [arXiv:1406.0269 [hep-lat]].
Our choice of chemical potentials:

\[\mu_u = \mu_d = \mu_q; \quad \mu_s = 0 \quad \Rightarrow \quad \mu_B = 3\mu_q; \quad \mu_Q = 0; \quad \mu_S = \mu_q. \]

Pressure expansion:

\[
\frac{p}{T^4} = \sum_{n=0}^{n_{\text{cut}}} c_{2n}^B \theta_B^{2n} + \sum_{n=1}^{\pi_{\text{cut}}} c_{2n}^S \theta_S^{2n} + c_{11}^B \theta_B \theta_S + c_{22}^B \theta_B^2 \theta_S + c_{13}^B \theta_B \theta_S^3 + c_{31}^B \theta_B^3 \theta_S + \ldots,
\]

\[\theta_B = \mu_B/T, \quad \theta_S = \mu_S/T = \theta_B/3. \]

Densities of the conserved charges:

\[
\frac{n_B}{T^3} = \frac{\partial (p/T^4)}{\partial \theta_B} = \left(2c_2^B + \frac{c_{11}^B}{3} \right) \theta_B + \left(4c_4^B + \frac{2c_{22}^B}{9} + \frac{c_{13}^B}{27} + c_{31}^B \right) \theta_B^3 + \left(6c_6^B + \ldots \right) \theta_B^5 + \ldots
\]

\[
\frac{n_S}{T^3} = \frac{\partial (p/T^4)}{\partial \theta_S} = \left(\frac{2c_2^S}{3} + c_{11}^S \right) \theta_B + \left(4c_4^S + \frac{2c_{22}^S}{3} + \frac{c_{13}^S}{3} + c_{31}^S \right) \theta_B^3 + \left(6c_6^S + \ldots \right) \theta_S^5 + \ldots
\]
Lattice setup

- Tree level improved Symanzik gauge action.
- Staggered $2 + 1$ fermionic action.
- Stout smearing improvement.
- Imaginary chemical potential: $\mu = i\mu_I$.
- External magnetic field:
 \[
 \vec{B} = B\vec{e}_z; \quad B = \text{const} \quad A_y^{\text{ext}} = Bx/2, \quad A_x^{\text{ext}} = -By/2, \quad A_{\mu}^{\text{ext}} = 0, \quad \mu = z, t
 \]
- Splitting of the rooted determinant:
 \[
 Z = \int \mathcal{D}U \ e^{-SG} \left[\det D(B, m_u, q_u) \right]^\frac{1}{4} \left[\det D(B, m_d, q_d) \right]^\frac{1}{4} \left[\det D(B, m_s, q_s) \right]^\frac{1}{4}
 \]
 \[
 D(n|f) = \frac{1}{2a} \sum_{\mu} \eta_\mu(n) \left[u_\mu(B, q, n) \Xi_\mu U_\mu(n) \delta_{f,n+\mu} - u^*_\mu(B, q, f) \Xi^*_\mu U^\dagger_\mu(f) \delta_{f,n-\mu} \right] + m \delta_{f,n}
 \]
 \[
 u_x(B, q, n_x, n_y, n_z, n_t) = e^{-ia^2 qB n_y/2}, \quad n_x \neq N_x - 1, \quad u_y(B, q, n_x, n_y, n_z, n_t) = e^{ia^2 qB n_x/2}, \quad n_y \neq N_y - 1,
 \]
 \[
 u_x(B, q, N_x - 1, n_y, n_z, n_t) = e^{-ia^2 qB(N_x+1)n_y/2}, \quad u_y(B, q, n_x, N_y - 1, n_z, n_t) = e^{ia^2 qB(N_y+1)n_x/2}.
 \]
 \[
 \Xi_\nu = e^{ia\mu_I \times \delta_{\nu 4}}
 \]
 Periodic boundary conditions \quad \Rightarrow \quad eB = \frac{6\pi k}{N_x N_y a^2}, \quad k \in \mathbb{Z}

Simulation parameters: 6×24^3 lattice;
- $eB = 0.5, 0.6, 0.8, 1.0, 1.5 \text{ GeV}^2$;
- $T = 123 - 206 \text{ MeV}$;
- physical quark masses.
J. N. Günther et al.

eB = 0 GeV2
cont. extrapolated
Conclusions

- Simulations at non-zero chemical potential and with external magnetic field are carried out.
- First results on expansion coefficients c_2, c_4, c_6 in external magnetic field are obtained.
- Strong dependence of the EoS expansion coefficients on magnetic field is observed.

Plans for future:

- Increase statistics on 6×24^3 lattice.
- Perform simulations on larger lattices and take continuum limit.