Bottomonium resonances with $I = 0$ from lattice QCD static potentials

(2)Lasse Mueller, (1)Pedro Bicudo, (1)Nuno Cardoso, (2)Marc Wagner

August 4, 2020

(1)Universidade de Lisboa

(2)Goethe-Universität Frankfurt am Main
Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
→ successfully applied to investigate resonances of $\bar{b}\bar{b}ud$-systems

Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
 → successfully applied to investigate resonances of $\bar{b}\bar{b}ud$-systems
 → We consider $\bar{b}b\bar{q}q$
 - more complicated because of additional decay channels
 - there are experimental results to compare with

→ Extension of work already published recently
Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential

→ successfully applied to investigate resonances of $\bar{b}\bar{b}ud$-systems

→ We consider $\bar{b}\bar{b}\bar{q}q$
 - more complicated because of additional decay channels
 - there are experimental results to compare with

→ We consider $I=0$ which corresponds to the experimental observed states

$(\eta_b(nS), \chi_{b0}(nP), \chi_{b1}(nP), \chi_{b2}(nP), \Upsilon(nS), \Upsilon(10860), \Upsilon(11020))$
Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential

→ successfully applied to investigate resonances of $\bar{b}\bar{b}ud$-systems

→ We consider $\bar{b}b\bar{q}q$
- more complicated because of additional decay channels
- there are experimental results to compare with

→ We consider $I=0$ which corresponds to the experimental observed states ($\eta_b(nS), \chi_{b0}(nP), \chi_{b1}(nP), \chi_{b2}(nP), \Upsilon(nS), \Upsilon(10860), \Upsilon(11020)$)

→ Similar efforts for $I=1$ corresponding to the Z_b-tetraquark ($Z_b(10610), Z_b(10650)$) by

Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
→ successfully applied to investigate resonances of $\bar{b}\bar{b}ud$-systems

→ We consider $\bar{b}\bar{b}qq$
 - more complicated because of additional decay channels
 - there are experimental results to compare with
→ We consider $I=0$ which corresponds to the experimental observed states
 $(\eta_b(nS), \chi_{b0}(nP), \chi_{b1}(nP), \chi_{b2}(nP), \Upsilon(nS), \Upsilon(10860), \Upsilon(11020))$
→ Similar efforts for $I=1$ corresponding to the Z_b-tetraquark ($Z_b(10610)$, $Z_b(10650)$) by
→ Extension of work already published recently
Consider two channels:

- Quarkonium channel $\bar{Q}Q$
- Heavy-light meson-meson channel, $\bar{M}M$ with $M = \bar{Q}q$

Quantum numbers

- J^{PC}: total angular momentum, parity and charge conjugation of the respective system.
- $S^{PC}_{Q/q}$: spin of $\bar{Q}Q/\bar{q}q$ and corresponding parity and charge conjugation.
- \tilde{J}^{PC}: total angular momentum excluding the heavy $\bar{Q}Q$ spins and corresponding parity and charge conjugation. (for Quarkonium $\tilde{J}^{PC} = L^{PC}$).

Assumptions and symmetries

- Heavy quark spins are conserved quantities
 → represented by a scalar wave function $\psi_{\bar{Q}Q}(r)$
- Only considering the lightest decay channel which corresponds to two parity negative mesons
- $\bar{Q}Q$ state with angular momentum $L_{\bar{Q}Q}$ can only decay into a $\bar{M}M$ state with $S^{PC}_{q} = 1^{--}$ and $L_{\bar{M}M} = L_{\bar{Q}Q} \pm 1$
 → represented by a 3-component wavefunction $\tilde{\psi}_{\bar{M}M}(r)$
Coupled channel Schroedinger equation

⇒ The wave function of the SE has 4-components \(\psi(r) = (\psi_{\bar{Q}Q}(r), \vec{\psi}_{\bar{M}M}(r)) \)

Resulting Schroedinger equation

\[
\left(-\frac{1}{2} \mu^{-1} \left(\partial_r^2 + \frac{2}{r} \partial_r - \frac{L^2}{r^2} \right) + V(r) + 2m_M - E \right) \psi(r) = 0 \tag{1}
\]

where \(\mu^{-1} = \text{diag}(1/\mu_Q, 1/\mu_M, 1/\mu_M, 1/\mu_M) \) and

\[
V(r) = \begin{pmatrix}
V_{\bar{Q}Q}(r) & V_{\text{mix}}(r) (1 \otimes e_r) \\
V_{\text{mix}}(r) (e_r \otimes 1) & V_{\bar{M}M,\parallel}(r) (e_r \otimes e_r) + V_{\bar{M}M,\perp}(r) (1 - e_r \otimes e_r)
\end{pmatrix} \tag{2}
\]

\(V_{\bar{Q}Q}(r), V_{\text{mix}}, V_{\bar{M}M,\parallel} \) and \(V_{\bar{M}M,\perp} \) can be related to lattice results for static potentials from QCD.
Static potentials from lattice QCD

Treat heavy quarks as static quarks with frozen positions at 0 and r.
Lattice computation of string breaking with optimized operators:

\[C(t) = \begin{pmatrix} \langle O_{Q\bar{Q}}|O_{Q\bar{Q}} \rangle & \langle O_{Q\bar{Q}}|O_{M\bar{M}} \rangle \\ \langle O_{M\bar{M}}|O_{Q\bar{Q}} \rangle & \langle O_{M\bar{M}}|O_{M\bar{M}} \rangle \end{pmatrix} \] (3)

\[O_{Q\bar{Q}} = (\Gamma_Q)_{AB} (\bar{Q}_A(0) U(0; r) Q_B(r)) \] (4)

\[O_{M\bar{M}} = (\Gamma_Q)_{AB} (\Gamma_q)_{CD} (\bar{Q}_A(0) u_D(0) \bar{u}_C(r) Q_B(r) + (u \rightarrow d)) \] (5)

\[\langle O_{Q\bar{Q}}|O_{Q\bar{Q}} \rangle_U \propto \left\langle \text{tr} \left(V^\dagger_t(r, 0) U_r(t, 0) V_0(r, 0) U^\dagger_0(t, 0) \right) \right\rangle_U \] (6)

\[\langle O_{Q\bar{Q}}|O_{M\bar{M}} \rangle_U \propto \left\langle \text{tr} \left(\Gamma_Q M_{(0,t);(r,t)}^{-1} U_r(t, 0) V_0(r, 0) U^\dagger_0(t, 0) \right) \right\rangle_U \] (7)

\[C(t) = \begin{pmatrix} \text{gauge transporter} \\ \sqrt{2} \text{ light } u \text{ and } d \text{ quark propagators} \end{pmatrix} \]

Talk by Marco Catillo on Thu. 16:20-16:40 "From QCD string breaking to quarkonium spectrum"
Relating $V(r)$ to static potentials from lattice QCD

From $C(t)$ the potentials can be extracted in the limit of large Euclidean time separations:

$$[C(t)]_{ij} \propto \sum_k a_k(r)e^{-V_k(r)t} \quad \text{for} \quad t \to \infty$$

(8)

One can derive a relation between these $V_k(r)$ and $V_{QQ}(r)$, $V_{\text{mix}}(r)$ and $V_{\text{MM}}(r)$.

$$V_{QQ}(r) = \cos^2(\theta(r))V_0^{\Sigma^+}(r) + \sin^2(\theta(r))V_1^{\Sigma^+}(r)$$

$$V_{\text{MM},\parallel}(r) = \sin^2(\theta(r))V_0^{\Sigma^+}(r) + \cos^2(\theta(r))V_1^{\Sigma^+}(r)$$

$$V_{\text{mix}}(r) = \cos(\theta(r))\sin(\theta(r)) \left(V_0^{\Sigma^+}(r) + V_1^{\Sigma^+}(r)\right)$$

$$V_{\text{MM},\perp}(r) = V_\Pi^+(r) = 0$$

where $V_0^{\Sigma^+}(r)$ denotes the ground state potential and $V_1^{\Sigma^+}(r)$ its first excitation.

We use existing results from

Coupled channel Schroedinger equation for resonances

We expand $\psi_{QQ}(r)$ in terms of \tilde{J} eigenfunctions and project the SE to definite angular momentum. For $\tilde{J} = 0$ we receive two coupled equations

$$
(H_{\tilde{J}} + (2m_M - E) \mathbb{1}_{3 \times 3}) \begin{pmatrix}
 u_{0,0}(r) \\
 \chi_{1 \rightarrow 0,0}(r)
\end{pmatrix} = - \begin{pmatrix}
 V_{\text{mix}}(r) \\
 V_{MM,\parallel}(r)
\end{pmatrix} kr j_1(kr) \quad (9)
$$

and for $\tilde{J} > 0$ we receive two sets of three coupled equations

$$
(H_{\tilde{J}} + (2m_M - E) \mathbb{1}_{3 \times 3}) \begin{pmatrix}
 u_{\tilde{J},\tilde{J}_z}(r) \\
 \chi_{\tilde{J}-1 \rightarrow \tilde{J},\tilde{J}_z}(r) \\
 \chi_{\tilde{J}+1 \rightarrow \tilde{J},\tilde{J}_z}(r)
\end{pmatrix} = - V_{\tilde{J}-1 \rightarrow \tilde{J}}(r) kr j_{\tilde{J}-1}(kr) \quad (10)
$$

$$
\text{"} = - V_{\tilde{J}+1 \rightarrow \tilde{J}}(r) kr j_{\tilde{J}+1}(kr). \quad (11)
$$

to be solved numerically with boundary conditions

$$
u_{\tilde{J},\tilde{J}_z}(r) = 0 \quad \text{and} \quad \chi_{L \rightarrow \tilde{J},\tilde{J}_z}(r) = it_{L \rightarrow \tilde{J},\tilde{J}_z} kr h^{(1)}_L(kr) \quad \text{for} \quad r \rightarrow \infty. \quad (12)
$$

This will yield the t-matrix and s-matrix for $\tilde{J} > 0$

$$
t_{\tilde{J},\tilde{J}_z} = \begin{pmatrix}
 t_{\tilde{J}-1 \rightarrow \tilde{J},\tilde{J}_z} & t_{\tilde{J}+1 \rightarrow \tilde{J},\tilde{J}_z} \\
 t_{\tilde{J}-1 \rightarrow \tilde{J},\tilde{J}_z} & t_{\tilde{J}+1 \rightarrow \tilde{J},\tilde{J}_z}
\end{pmatrix}, \quad s_{\tilde{J},\tilde{J}_z} = 1 + 2it_{\tilde{J},\tilde{J}_z} \quad (13)
$$
Scattering amplitude and phase shifts

Solved SE for $\tilde{J} \leq 3$ using two independent methods:

- Discretization of spacetime rewriting the SE as a system of linear equations $M(E)x = b$, solved by Matrix inversion
- 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and 84th percentile.

scattering phase: $e^{2i\delta_{\tilde{J},\tilde{J}_z}} = 1 + 2it_{\tilde{J},\tilde{J}_z}$
$e^{2i\delta_{\tilde{J},\tilde{J}_z}:\text{total}} = \det(s_{\tilde{J},\tilde{J}_z})$
Scattering amplitude and phase shifts

Solved SE for $\tilde{J} \leq 3$ using two independent methods:

- Discretization of spacetime rewriting the SE as a system of linear equations $M(E)x = b$, solved by Matrix inversion
- 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and 84th percentile.

scattering phase:

$$e^{2i\delta_{L\rightarrow \tilde{J},\tilde{J}_z}} = 1 + 2it_{L\rightarrow \tilde{J},\tilde{J}_z}$$

$$e^{2i\delta_{\tilde{J},\tilde{J}_z,\text{total}}} = \text{det}(s_{\tilde{J},\tilde{J}_z})$$

$\tilde{J}PC = 0^{++}$

$\tilde{J}PC = 0^{++}$
Pole positions in the complex plane

- Analytic continuation of our scattering problem to the complex plane
- Poles found using a Newton-Raphson shooting algorithm.
- Pole positions are related to masses and decay width via

 \[m = \Re(E) \quad \text{and} \quad \Gamma = -2 \Im(E) \]

\[\tilde{J} = 0 \]

\[\tilde{J} = 1 \]

\[\tilde{J} = 2 \]

\[\tilde{J} = 3 \]
Comparison to the experiment

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>n</th>
<th>Re(E) [GeV]</th>
<th>Im(E) [MeV]</th>
<th>$\text{from poles of } t_{J_s}^J$</th>
<th>from experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0++</td>
<td>1</td>
<td>9.563^{+11}_{-17}</td>
<td>0</td>
<td>$\eta_b(1S)$ 9.399(2) 10(5) $0^+(0^-)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.018^{+8}_{-10}</td>
<td>0</td>
<td>$\Upsilon_b(1S)$ 9.460(0) 0^- 1$^-$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.340^{+7}_{-9}</td>
<td>0</td>
<td>$\eta_b(2S)_{\text{Belle}}$ 9.999(6) $0^+(0^-)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.603^{+5}_{-6}</td>
<td>0</td>
<td>$\Upsilon(2S)$ 10.023(0) 0^- 1$^-$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10.774^{+4}_{-4}</td>
<td>$-49.3^{+3.0}_{-1.6}$</td>
<td>$\Upsilon(10750)_{\text{Belle}}$ 10.753(7) 36(22) $0^-(1^-$)</td>
<td></td>
</tr>
<tr>
<td>1−−</td>
<td>1</td>
<td>9.882^{+3}_{-4}</td>
<td>0</td>
<td>$\chi_b(1P)$ 9.859(1) $0^+(0^+)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.228^{+3}_{-3}</td>
<td>0</td>
<td>$h_b(1P)$ 9.890(1) $0^+(0^+)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.508^{+3}_{-3}</td>
<td>0</td>
<td>$\chi_b(1P)$ 9.893(1) $0^+(1^+)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.786^{+3}_{-3}</td>
<td>$-8.7^{+9.8}_{-0.7}$</td>
<td>$\chi_b(2P)$ 10.233(1) $0^+(0^+)$</td>
<td></td>
</tr>
<tr>
<td>2++</td>
<td>1</td>
<td>10.107^{+3}_{-3}</td>
<td>0</td>
<td>$\Upsilon(1D)$ 10.164(2) $0^-(2^-)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.400^{+3}_{-3}</td>
<td>0</td>
<td>$\Upsilon(1P)$ 10.164(2) $0^-(2^-)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.635^{+2}_{-1}</td>
<td>$-5.8^{+1.5}_{-2.6}$</td>
<td>$\chi_b(2P)$ 10.267(1) $0^+(2^+)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.911^{+4}_{-6}</td>
<td>$-16.8^{+1.7}_{-0.9}$</td>
<td>$\chi_b(3P)$ 10.512(2) $0^+(0^+)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>11.153^{+9}_{-13}</td>
<td>$-7.2^{+9.6}_{-0.6}$</td>
<td>$\Upsilon(3S)$ 10.579(1) 21(3) $0^-(1^-)$</td>
<td></td>
</tr>
<tr>
<td>3−−</td>
<td>1</td>
<td>10.296^{+2}_{-3}</td>
<td>0</td>
<td>$\chi_b(1P)$ 9.893(1) $0^+(1^+)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.557^{+4}_{-3}</td>
<td>0</td>
<td>$\Upsilon(2S)$ 10.023(0) 0^- 1$^-$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.818^{+2}_{-3}</td>
<td>$-15.8^{+2.4}_{-1.6}$</td>
<td>$\chi_b(2P)$ 10.267(1) $0^+(2^+)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>11.054^{+6}_{-9}</td>
<td>$-4.4^{+0.7}_{-0.5}$</td>
<td>$\chi_b(3P)$ 10.512(2) $0^+(0^+)$</td>
<td></td>
</tr>
</tbody>
</table>
Comparison to the experiment

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>n</th>
<th>$\text{Re}(E) [\text{GeV}]$</th>
<th>$\text{Im}(E) [\text{MeV}]$</th>
<th>$\text{from poles of } t_{\bar{J},J_z}$</th>
<th>from experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0++</td>
<td>1</td>
<td>9.563^{+11}_{-17}</td>
<td>0</td>
<td>$\eta_b(1S)$ $9.399(2)$ $10(5)$ 0+(0^+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.018^{+8}_{-10}</td>
<td>0</td>
<td>$\Upsilon_b(1S)$ $9.460(0)$ ≈ 0 0−(1^-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.340^{+7}_{-9}</td>
<td>0</td>
<td>$\eta_b(2S)_{\text{Belle}}$ $9.999(6)$ - 0+(0^+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.603^{+5}_{-6}</td>
<td>0</td>
<td>$\Upsilon(2S)$ $10.023(0)$ ≈ 0 0−(1^-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10.774^{+4}_{-4}</td>
<td>$-49.3^{+1.0}_{-1.6}$</td>
<td>$\Upsilon(10750)_{\text{Belle II}}$ $10.753(7)$ $36(22)$ 0−(1^-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10.895^{+7}_{-10}</td>
<td>$-11.1^{+2.4}_{-3.6}$</td>
<td>$\Upsilon(10860)$ $10.890(3)$ $51(7)$ 0−(1^-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11.120^{+3}_{-13}</td>
<td>$-0.0^{+0.0}_{-0.2}$</td>
<td>$\Upsilon(11020)$ $10.993(1)$ $49(15)$ 0−(1^-)</td>
<td></td>
</tr>
</tbody>
</table>

1−−	1	9.882^{+3}_{-4}	0	$\chi_{b0}(1P)$ $9.859(1)$ - 0+(0^+)	
	2	10.228^{+3}_{-3}	0	$h_b(1P)$ $9.890(1)$ - ?(1^+)	
	3	10.508^{+3}_{-3}	0	$\chi_{b1}(1P)$ $9.893(1)$ - 0+(1^+)	
	4	10.786^{+2}_{-3}	$-8.7^{+0.5}_{-0.7}$	$\chi_{b2}(1P)$ $9.912(1)$ - 0+(2^+)	
	5	11.019^{+6}_{-9}	$-9.3^{+0.8}_{-0.6}$	$\chi_{b0}(2P)$ $10.233(1)$ - 0+(0^+)	
	6	11.255^{+3}_{-20}	$-7.6^{+0.5}_{-0.4}$	$h_b(2P)_{\text{Belle}}$ $10.255(1)$ - 0+(1^+)	

| 2++ | 1 | 10.107^{+3}_{-3} | 0 | $\Upsilon(1D)$ $10.164(2)$ - 0−(2^-) | |
| | 2 | 10.400^{+3}_{-3} | 0 | | |

3−−	1	10.296^{+2}_{-3}	0		
	2	10.557^{+4}_{-3}	0		
	3	10.818^{+2}_{-3}	$-15.8^{+2.4}_{-1.6}$		
	4	11.054^{+6}_{-9}	$-4.4^{+0.7}_{-0.5}$		
Conclusion and Outlook

We

• obtain resonances that match the experimentally found states \(\Upsilon(10750)_{\text{BELLE II}} \) and \(\Upsilon(10860) \).

• find indications that \(\Upsilon(11020) \) might be an D-wave state

• were able to make predictions for resonances with \(\tilde{J} > 0 \) which may be found in the future by the experiment

Outlook:

• **Aim:** Reduce systematic errors as much as possible
 → **next step:** include heavy spin effects to reduce the systematic error

• include decay channels with to a negative parity and a positive parity heavy-light meson
 → **more realistic predictions up to around 11.5 GeV**

• perform a dedicated lattice QCD computation of the static potentials