A New Perspective to Hadronic Excitations above T_c

Christian Rohrhofer (Osaka U.)
Y. Aoki, G. Cossu, H. Fukaya, S. Hashimoto, K. Suzuki

APLAT online symposium
August 4th, 2020
Strongly Interacting Matter at High Temperature

- QCD in vacuum: broken chiral symmetry, confinement

- At high temperature: heavy-ion collisions, early universe
 - Quark-gluon plasma, “deconfinement”?

- Previous research around chiral symmetry & axial anomaly:
 - Restoration established
 - Crossover, different temperatures (!)
 - Screening spectrum for mesons, baryons
 - Connection between chiral susceptibility and U(1) anomaly? (see talk H.Fukaya, 4-2 A session)
$n_f=2$ Möbius DW fermions ($m_{\text{res}} < 1$ MeV)

Symanzik gauge action @ $\beta=4.30$ ($1/a = 2.6$ GeV)

$N_s = 24, 32, 40, 48$ ($1.8 - 3.6$ fm)

$N_t = 14, 12, 10, 8, 6$ ($T = 190 - 440$ MeV)

$m_{ud} = 0.001 - 0.01$ ($3 - 30$ MeV)

$T_c^{\text{Polyakov}} = 175$ MeV
Thermodynamics and Hadron Melting

Around the chiral transition the hadronic description of strongly interacting matter breaks down!

right: A.Bazavov et al, Phys.Rev.D 95 (2017) 5, 054504
The Screening Mass Spectrum

Left: A. Bazavov et al (HotQCD collab) Phys. Rev. D 100 (2019) 9, 094510

Right: JLQCD, in preparation

Measuring the hadronic spectrum of the quark plasma

Carleton DeTar

Department of Physics, University of Utah, Salt Lake City, Utah 84112

John B. Kogut

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

(Received 6 July 1987)
Looking close at our last years efforts..

\[
Pseudoscalar: \quad C_1(z) = \frac{2\pi}{\beta^3} \frac{e^{-2z\omega_0}/2\omega_0}{2z}\left[1 + \frac{1}{2z\omega_0}\right] + O\left(\frac{e^{-4z\omega_0}/z\omega_0}{z\omega_0}\right)
\]

\[
Vector: \quad C_{\gamma_1}(z) = \frac{2\pi}{\beta^3} \frac{e^{-2z\omega_0}/2\omega_0}{2z}\left[1 + \frac{1}{(2z\omega_0)^2} + \cdots\right] + O\left(\frac{e^{-4z\omega_0}/z\omega_0}{z\omega_0}\right)
\]

\[
Tensor: \quad C_{\gamma_4\gamma_3}(z) = \frac{2\pi}{\beta^3} \frac{e^{-2z\omega_0}/2\omega_0}{2z}\left[1 - \frac{1}{2z\omega_0} + \cdots\right] + O\left(\frac{e^{-6z\omega_0}/z\omega_0}{z\omega_0}\right)
\]

single pole: \[C_\Gamma(z) \sim e^{-mz}\]

not possible!

fit to thermal fermions

cut (two quark state): \[C_\Gamma(z) \sim e^{-\bar{m}z}/z\]

\[\bar{m} = 2\omega_0\]
Fitting \exp/z instead of Single Pole

(local fits on point source correlation functions)
Improved Screening Mass Spectrum

exp/z fits two quarks to lowest Matsubara frequencies

Deviation from $2 \omega_0$ due to interaction!
Introducing $SU(4)$ and Chiral Spin Symmetry

$\Psi \xrightarrow{SU(2)_{CS}} e^{i\vec{\Sigma}_0/2} \Psi$

$\vec{\Sigma}_0 = \{\gamma_0, -i\gamma_5\gamma_0, \gamma_5\}$

Minimal group containing $SU(2)_{CS}$ and chiral symmetry: $SU(2n_f)$

L. Glozman and M. Pak, Phys.Rev. D92 (2015) 1, 016001

free, massless fermions:

$$L = \bar{\Psi}i\gamma^0 D_0 \Psi$$

interacting, massless fermions:

$$L = \bar{\Psi}i\gamma^i D_i \Psi$$

- kinetic term breaks chiral spin
- electric term is invariant
- magnetic term breaks chiral spin

CR et al, Phys.Rev.D 100 (2019) 1, 014502

SU(4) and chiral spin symmetry in meson screening spectrum and spectral functions
The Nature of QCD Interaction at High-T

kinetic terms factors out through exp/z fit

electric term is SU(2)$_{\text{CS}}$ invariant

magnetic term breaks SU(2)$_{\text{CS}}$

Graphs showing:
- **no kinetic**
- **electric & magnetic**
- **purely magnetic**
Conclusion

- High T screening correlators favor two-quark systems over single pole
- Direct comparison to EQCD and dimensionally reduced theories
- Conceptually in agreement with known behavior around T_c

Open problems (so far):
- Effective degrees of freedom change after T_c
- “Strong” strong interaction prevents perturbative description

SU(4), chiral spin symmetry and exp/z unify all phenomena:
- Dominating *color-electric* fields drive split between spin channels
- *Color-magnetic* interaction cause Vector/Tensor mass gap
- Framework to link lattice and perturbative calculations

@chrisrohrhofer