Near-conformal dynamics in a chirally broken system

Oliver Witzel
Lattice Strong Dynamics collaboration

University of Colorado
Boulder

Asia-Pacific Symposium for Lattice Field Theory · August 4, 2020
introduction
Composite Higgs models: general idea

- Extend the Standard Model by a new, strongly coupled gauge-fermion system
- The Higgs boson arises as bound state of this new sector
 - Mass and quantum numbers match experimental values when accounting for SM interactions/corrections
- System exhibits a large separation of scales
 - Explaining why a 125 GeV Higgs boson but no other states have been found
 - Indications that such a system cannot be QCD-like (e.g. quark mass generation)
 - near-conformal gauge theories
- Exhibits mechanism to generate masses for SM fermions and gauge bosons
- In agreement with electro-weak precision constraints (e.g. S-parameter)?
- Mass-split models can accommodate the Higgs both as dilaton-like \(0^{++}\) or pNGB particle
Mass-split models

- Promising candidates are chirally broken in the IR but conformal in the UV

- Mass-split models e.g. SU(3) gauge theory with “heavy” and “light” (massless) fundamental flavors
 - Add $N_h = 6$ heavy flavors to push the system near an IRFP of a conformal theory
 - $N_\ell = 4$ light flavors are chirally broken in the IR
 - Heavy flavors could be invisible to SM
 - Fundamental composite 2HDM with 4 flavors in SU(3) gauge [Ma, Cacciapaglia JHEP03(2016)211]
The mass-split paradigm

- In QCD: $g^2 \to 0$ (continuum limit); fermion mass $m_f \to 0$ (chiral limit)

- Theory with degenerate $N_f = N_h + N_\ell$ is (mass-deformed) conformal and exhibits an IRFP
 - All ratios of hadron masses scale with the anomalous dimension (hyperscaling)
 - Continuum limit is taken by sending fermion mass $m_f \to 0$

- Mass-split models live in the basin of attraction of the IRFP of N_f degenerate flavors
 - Inherit hyperscaling of ratios of hadron masses but are chirally broken
 - Continuum limit: $m_h \to 0$ keeping m_ℓ/m_h fixed
 - Chiral limit: $m_\ell \to 0$ i.e. $m_\ell/m_h \to 0$
 - Gauge coupling is irrelevant
 - No free parameters after taking the chiral and continuum limit, but light-light, heavy-light, and heavy-heavy bound states

[Hasenfratz, Rebbi, OW PLB773(2017)86]
hyperscaling
Deriving hyperscaling from Wilsonian Renormalization Group

- In the UV: $\hat{m}_\ell, \hat{m}_h \ll \Lambda_{\text{cut}} = 1/a$ and $\hat{m}_\ell \ll 1, \hat{m}_h \ll 1$

- Lowering the energy scale μ from Λ_{cut}, RG flowed lattice action moves in the infinite parameter action space as dictated by the fixed point structure of the N_f conformal theory

- Masses scale according to their scaling dimension: $\hat{m}_{\ell,h} \rightarrow \hat{m}_{\ell,h} (a\mu)^{-y_m}$
 → Assuming masses are still small so the system remains close to the conformal critical surface

- Gauge couplings take their IRFP value i.e. only masses change under RG flow

- Physical quantities of mass dimension one follow at leading order the scaling form

\[aM_H = \hat{m}_h^{1/y_m} \Phi_H(\hat{m}_\ell/\hat{m}_h) \]
Hyperscaling of hadronic masses

- Hyperscaling relation

\[aM_H = \hat{m}_h^{1/y_m} \Phi_H(\hat{m}_\ell/\hat{m}_h) \]

- \(aM_H \) lattice hadron masses (physical quantity of mass dimension)
- \(\hat{m}_h \) lattice fermion mass
 \[\hat{m}_x \equiv a\tilde{m}_x = a(m_x + m_{\text{res}}), \ x = \ell, \ h \]
- \(y_m = 1 + \gamma_m^* \) scaling dimension
- \(\Phi_H \) some function of \(\hat{m}_\ell/\hat{m}_h \)

\[\frac{M_{H1}}{M_{H2}} = \frac{\Phi_{H1}(\hat{m}_\ell/\hat{m}_h)}{\Phi_{H2}(\hat{m}_\ell/\hat{m}_h)} \]

→ Ratios depend only on \(\hat{m}_\ell/\hat{m}_h \)
Ratios over $F_{ps}^{\ell\ell}$

- **pseudoscalar**
- **vector**
- **scalar**
- **axial**

- light-light ($\ell\ell$), heavy-light ($h\ell$), heavy-heavy (hh) states
Ratios over $F_{ps}^{\ell \ell}$ (II)

- light-light-light ($\ell \ell \ell$), heavy-light-light ($h \ell \ell$), heavy-heavy-light ($h h \ell$), heavy-heavy-heavy ($h h h$) states

Oliver Witzel (University of Colorado Boulder)
Determine y_m from hyperscaling relation: $a/\sqrt{8t_0}$

\[aM_H = \hat{m}^{1/y_m} \Phi_H(\hat{m}_\ell/\hat{m}_h) \]

- Choose e.g. the gradient flow lattice scale $a/\sqrt{8t_0}$ as quantity of mass dimension aM_H

- Polynomial ansatz for $\Phi_H(\hat{m}_\ell/\hat{m}_h)$

- Fit $\hat{m}_h^{1/y_m} \cdot (c_2(\hat{m}_l/\hat{m}_h)^2 + c_1(\hat{m}_l/\hat{m}_h) + c_0)$ to all 17 data points at three \hat{m}_h values and determine $y_m = 1.469(23)$

- Note: $\Phi_{\sqrt{8t_0}}(0) \approx 0.48$
Determine y_m from hyperscaling relation: aF_{ps}

$$aM_H = \hat{m}_h^{1/y_m} \Phi_H(\hat{m}_\ell/\hat{m}_h)$$

- Polynomial ansatz for $\Phi(\hat{m}_\ell/\hat{m}_h)$

- Pseudoscalar decay constants $aF_{ps}^{\ell\ell}, aF_{ps}^{h\ell}, aF_{ps}^{hh}$

- Combined, correlated fit to all 51 data points at three \hat{m}_h values to determine $y_m = 1.470(52)$

- Chiral limit of $aF_{ps}^{\ell\ell} \sim 0.08/\hat{m}_h^{-1/y_m}$

\Rightarrow light sector is chirally broken
effective field theory
Hadronic scale Λ_H

- Heavy flavors decouple, light flavors condense and spontaneously break chiral symmetry when $\tilde{m}_h(a/\mu)^{-y_m} \approx 1$

- Introduce hadronic or chiral symmetry breaking scale $\Lambda_H = \tilde{m}_h^{1/y_m}a^{-1}$

- If energy scale μ is lowered below Λ_H, gauge coupling starts running again

- Using the scaling relation for $\sqrt{8t_0}$, we can define Λ_H

\[\text{In the chiral limit: } a = (\tilde{m}_h)^{1/y_m} \cdot \Phi_{\sqrt{8t_0}(0)} \cdot \sqrt{8t_0} |_{m_\ell = 0} \]

\[\Rightarrow \Lambda_H^{-1} = \Phi_{\sqrt{8t_0}(0)} \cdot \sqrt{8t_0} |_{m_\ell = 0} \]
Chiral $\hat{m}_\ell/\hat{m}_h \rightarrow 0$ limit

$\left(\frac{M_{ps}}{\Lambda_H}\right)^2$ is close to linear in \hat{m}_ℓ/\hat{m}_h
(small curvature visible for $\hat{m}_\ell/\hat{m}_h \gtrsim 0.25$)

M_{vt}/M_{ps} increases for $\hat{m}_\ell/\hat{m}_h \rightarrow 0$
(diverges for chirally broken theories)
Low energy effective description

- In the low energy IR limit our system exhibits spontaneous chiral symmetry breaking.

- Seek chiral effective Lagrangian smoothly connecting to hyperscaling relation valid at $\mu = \Lambda_H$.

- Express lattice scale a in terms of Λ_H: $M_H/\Lambda_H = (aM_H) \cdot \hat{m}_h^{-1/y_m} = \Phi_H(\hat{m}_\ell/\hat{m}_h)$.

- Below Λ_H, the 4+6 system reduces to chirally broken $N_f = 4$ with running fermion mass m_f.

- Scaling of the light flavor mass implies: $m_f \propto \hat{m}_\ell(a\Lambda_H)^{-y_m} \cdot \Lambda_H = (\hat{m}_\ell/\hat{m}_h) \cdot \Lambda_H$.

- Continuum limit taken by tuning $m_h \to 0$ while keeping \hat{m}_ℓ/\hat{m}_h fixed.

- Only considering light-light quantities, dropping superscript $\ell\ell$.
Dilaton chiral perturbation theory (dChPT)

- Derived for chirally broken systems just below the conformal window with a 0^{++} (dilaton) as light as the pseudoscalar.
- Can be adapted for mass-split systems: $m_f \rightarrow (\frac{\hat{m}_f}{\hat{m}_h}) \cdot \Lambda_H$
- General dChPT scaling relation

$$d_0 \cdot F_{ps}^{2-y_m} = M_{ps}^2/m_f \quad \rightarrow \quad d_0 \cdot (aF_{ps})^{2-y_m} = (aM_{ps})^2/\hat{m}_\ell$$

$$\frac{M_{ps}^2}{F_{ps}^2} = \frac{1}{y_m d_1} W_0 \left(\frac{y_m d_1}{d_2} m_f \right) \quad \rightarrow \quad \frac{M_{ps}^2}{F_{ps}^2} = \frac{1}{y_m d_1} W_0 \left(\frac{y_m d_1}{d_2} \frac{\hat{m}_\ell}{\hat{m}_h} \cdot \Lambda_H \right)$$

with W_0 Lambert W-function and low energy coefficients d_0, d_1, d_2
Fit to the general dChPT scaling relation

- **Fitting**

 \[d_0 \cdot (aF_{ps})^2 y_m = (aM_{ps})^2 / \hat{m}_\ell \]

 \(\rightarrow M_{ps} \) and \(F_{ps} \) have similar size, correlated uncertainties

 \(\rightarrow \) To avoid complicated fit

 1) Use \(y_m = 1.470(52) \) as input, fit only \(d_0 \)

 2) Scan range of \(d_0 \), fit \(y_m \), seeking minimal \(\chi^2 \) ("curve collapse")

\[\frac{1}{d_0} = 10(2) \]

\[\frac{y_m}{(aM_{ps})^2 / \hat{m}_\ell} = 1.470(52) \text{ (input)} \]

\[\chi^2 / \text{dof} = 0.062, \ p\text{-value} = 100\% \]

\[d_0 = 7.30(15) \text{ (input)} \]

\[\frac{y_m}{(aM_{ps})^2 / \hat{m}_\ell} = 1.575(7) \]

\[\chi^2 / \text{dof} = 1.182, \ p\text{-value} = 27\% \]
Fit assuming a specific dilaton potential

Fitting

\[
\frac{M_{ps}^2}{F_{ps}^2} = \frac{1}{y_m d_1} W_0 \left(\frac{y_m d_1}{d_2} \ell \cdot H \right)
\]

\[\rightarrow \text{Determine } p_0 = y_m d_1 \]
\[\text{and } p_1 = y_m d_1/d_2 \]
summary and outlook
Summary

▶ Mass-split simulations with 4 light and 6 heavy flavors
 → Exhibit hyperscaling in $\widehat{m}_\ell/\widehat{m}_h$
 → Allow to extract y_m corresponding to the $N_f = 10$ infrared fixed point

▶ dChPT describes our mass-split system very well
 → Need to measure the 0^{++} for additional validation
 → $\widehat{m}_\ell/\widehat{m}_h$ is a continuous parameter similar to the mass in regular χPT
 i.e. can vary range to test need for higher order terms

▶ $N_f = 10$ anomalous dimension $\gamma_m^* \approx 0.47$ is small
 → Consistent with findings for $N_f = 12$ ($\gamma_m^* \approx 0.24$) and $N_f = 8$ ($\gamma_m^* \approx 1$)
 → γ_m^* likely too small for phenomenological applications
 → Suggests models based on $N_f = 8$ or 9 could be closer to the sill of the conformal window
Outlook

- Numerically measure the isosinglet scalar 0^{++}
- Push simulations deeper into the chiral regime
- Connect simulations to the degenerate $N_f = 10$ conformal limit
- Determine phenomenologically interesting quantities
 - Baryonic anomalous dimension
 - Calculate the S-parameter
 - Determine the Higgs potential
- Investigate finite temperature phase structure
Resources

LLNL: vulcan, lassen

ALCF (ANL): mira, theta

USQCD: Ds, Bc, and pi0 cluster (Fermilab); qcd16p/18p (Jlab); sdcc (BNL)

U Colorado: summit

BU: engaging and scc (MGHPCC)
Numerical Simulations

- Lattice field theory
- Hypercubic lattices with \((L/a)^3 \times (T/a)\)
 with \(L/a = 24, 32\) and \(T/a = 64\)
- Simulate SU(3) gauge system with four light and six heavy flavors
 → Three times stout-smeared \((\varrho = 0.1)\) Möbius domain wall fermions (MDWF) with Syamnzik gauge action
- MDWF are simulated with a fifth dimension \(L_s\) to create chiral fermions in four dimensions
 → \(L_s = 16\) ⇒ small residual chiral symmetry breaking \(O(10^{-3})\)
- Parameters
 → \(\beta = 4.03\)
 → \(0.015 \leq am_\ell \leq 0.100\)
 → \(am_h = 0.200, 0.175, 0.150\)
Gradient flow step-scaling β-function

\[\beta_c^S(g_c^2; L) = \frac{g_c^2(g_c^2(sL) - g_c^2(L))}{\log(s^2)} \]
\hspace{1cm} \text{(negative of continuum β function)}

\[g_c^2(L) = \frac{128\pi^2}{3(N_c^2 - 1)} \frac{1}{C(c, L)} t^2 \langle E(t) \rangle \quad \text{with } \sqrt{8t} = c \cdot L \]

→ $C(c, L)$ perturbative tree-level improvement term \cite{Fodor et al. JHEP09(2014)018}
\hspace{1cm} or zero mode correction $(1 + \delta(t/L^2))$ \cite{Fodor et al. JHEP11(2012)007}

→ Generate ensembles of dynamical gauge field configurations with L^4 and $(s \cdot L)^4$ volumes

→ Extrapolate $L \rightarrow \infty$ to remove discretization effects and take the continuum limit

→ Expect to find agreement for results based on different actions, operators . . .
$N_f = 10$ step-scaling β-function

[Hasenfratz, Rebbi, OW PRD101 (2020) 114508]

$\beta_{c,s}(g_c^2)$

\begin{itemize}
 \item Gradient flow scheme $c = 0.300$
 \item Gradient flow scheme $c = 0.275$
\end{itemize}
Two scenarios for a composite Higgs

► Light iso-singlet scalar (0^{++})
 → “Dilaton-like”
 → Scale: $F_{ps} = \text{SM vev} \sim 246 \text{ GeV}$
 → ideal 2 massless flavors
 ⇒ giving rise to 3 Goldstone bosons
 ⇒ longitudinal components of W^\pm and Z^0

► pseudo Nambu Goldstone Boson (pNGB)
 → Spontaneous breaking of flavor symmetry
 ⇒ $N_f \geq 3$
 → Mass emerges from its interactions
 → Non-trivial vacuum alignment
 $F_{ps} = (\text{SM vev})/\sin(\chi) > 246 \text{ GeV}$

Mass-split models can accommodate both scenarios

→ Requires to find a light 0^{++}
 i.e. $M_{ps} \sim M_{0^{++}} < M_{vt}$

→ Fundamental composite 2HDM
 [Ma, Cacciapaglia JHEP03(2016)211]
Fundamental composite 2HDM with four flavors

- Global symmetry at low energies:

 \[SU(4) \times SU(4) \] broken to \[SU(4)_{\text{diag}} \]

- 15 pNGB transform under custodial symmetry

 \[SU(2)_L \times SU(2)_R \]

 \[\Rightarrow 15_{SU(4)_{\text{diag}}} = (2, 2) + (2, 2) + (3, 1) + (1, 3) + (1, 1) \]

 → One doublet plays the role of the Higgs doublet field
 → Other doublet and triplets are stable; could play role of dark matter

- Vecchi: “choose the right couplings to RH top” [Edinburgh talk]

 \[\Rightarrow (2, 2) + (2, 2) + (3, 1) + (1, 3) + (1, 1) \]

 \[\sim \text{effectively } SU(4)/Sp(4) \]