

Current and Future HEP Program in the U.S.

Nigel Lockyer April 22, 2021

Outline of HEP Activities from following DOE labs

- Brookhaven National Lab
- Argonne
- Berkeley
- SLAC
- Fermilab

Secretary of Energy Jennifer Granholm

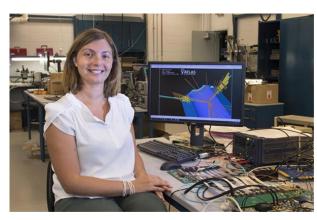
High Energy Physics at BNL ATLAS

- Lead lab for U.S. ATLAS team of 800 scientists
- Successfully completed U.S. ATLAS Phase I upgrade
- Host for \$250 million high luminosity ATLAS upgrade

Building magnets for HL-LHC upgrade Neutrino Program at Fermilab

- Operation of Proto-DUNE detector with BNL-developed cold electronics, developing options for 2nd detector
- Addressing low energy excess neutrino anomaly via shortbaseline experiments

Belle II


Lead lab for U.S. Belle experiment, Host computing center

Vera Rubin Observatory - LSST

- Completed constructing CCD sensors
- Supporting camera testing and assembly at SLAC

Theory

 Fundamental progress on definitive calculation of hadronic contributions to muon (g-2)

Viviana Cavaliere from BNL works on Higgs studies at ATLAS

LSST CCD sensors assembly at BNL Fermilab

High Energy Physics at BNL: Looking Forward

Energy Frontier

- Deliver U.S. ATLAS and high field magnet upgrade projects for HL-LHC
- Building computing and software required for effective HL-LHC data management

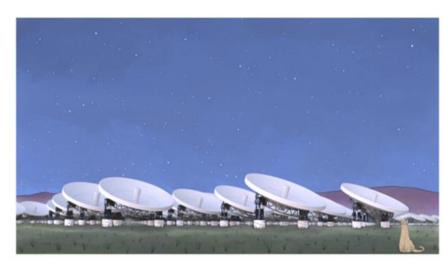
Intensity Frontier

- Enabling DUNE experiment
 - Studies of neutrinos, supernova explosions, and proton decay
- Studying CP violation with Belle II experiment

Cosmic frontier

- Analysis of unique Vera Rubin data
 - Understanding Universe expansion

Leading Technologies


 Key R&D activities in software, detectors, computing, superconducting magnets, and accelerators

Snowmass planning process

- BNL scientists are leading Energy, Neutrino Frontiers and Education and Outreach efforts
 - And participate in various study groups

Building and testing superconducting magnets for HL-LHC upgrade

New 21cm large telescope array is among BNL led proposals for Snowmass

Accelerator activities at Argonne

- The Argonne Accelerator Institute (AAI) is an umbrella organization for coordinating accelerator activities
- Argonne accelerator facilities supported by three offices in the DOE Office of Science: BES (APS), NP (ATLAS) and HEP (AWA).
- Argonne has almost every area of accelerator science and technology with relevance to HEP
 - Electron storage rings (damping rings)
 - Hadron beams (Intensity Frontier)
 - Superconducting RF (PIP-II)
 - Normal and superconducting undulators (damping rings, polarized e+)
 - Advanced accelerators (Future Linear Collider)
- Unique infrastructure (e.g. SRF and magnet labs)

APS Division.

- APS Upgrade will be the most sophisticated electron storage ring ever built.
- Storage Ring Physics (M. Borland)
- Physics and design of an x-ray FEL oscillator (XFELO) (R. Lindberg)
- Diamond optics towards an x-ray optical cavity (KJ. Kim/Y. Shvyd'ko)
- Superconducting undulators (Y. Ivanyushenkov)
- Simulation code development (M. Borland)

PHYS Division.

- Operation of the nuclear physics ATLAS user facility (B. Mustapha)
- Superconducting RF development (M. Kelly)
- Accelerator-based research on radioisotopes (J. Nolen)

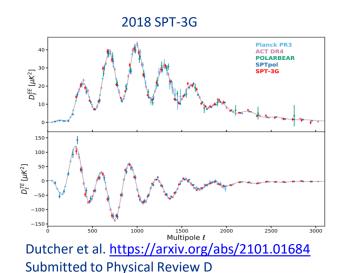
Accelerator activities at Argonne

EOF Division

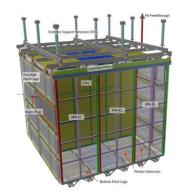
Accelerator-based research and production of radioisotopes (S. Chemerisov)

HEP Division.

- Operation of the Argonne Wakefield Accelerator Facility (J. Power)
- Advanced Accelerator R&D: Structure Wakefield Acceleration and Phase Space Manipulation. (P. Piot)


AAI (joint accelerator activities) (J. Byrd)

- SRF Gun project (J. Byrd/P.Piot) APS, PHYS, HEP
- Linac Extension Area Facility (A. Zholents) APS,HEP
- Collinear Wakefield Accelerator R&D (A. Zholents) APS,HEP
- Shared resources across accelerator groups (J. Byrd) APS, HEP
- AAI sponsored joint appointments (J. Byrd)


A Sample of Activities at Argonne HEP

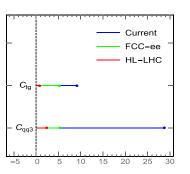
DUNE/ProtoDUNE

Argonne 4T facility

g-2 field (cross-)calibration


Cosmic simulation

Bias Resistor
SQUID


LC Chip

Particle distribution in the Last Journey simulation showing a small sub-volume (~1/100,000 of the total volume).

ATLAS ITk pixels

Theory: SMEFT coefficients

Technology for CMB-S4

HIGHLIGHTS OF ACCELERATOR R&D AT BERKELEY LAB

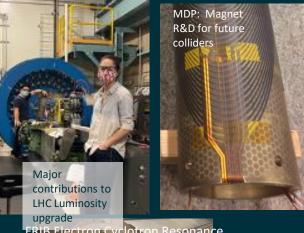
LASER-PLASMA ACCELERATION, EXASCALE MODELING AND HIGH FIELD MAGNETS

Exascale project for accelerator modeling

Open standard for particle and mesh data

- "Virtual accelerators"
- Simulations
- Machine learning

Compact laser-plasma accelerators



Record electrons energies with ultra-high gradient acceleration, Beamline projects underway for staging and LaserNetUS, applications in rad bio, materials, radiography, ...

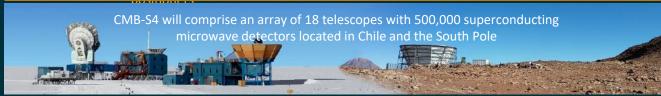
Next big step: kBELLA
High average power laser
facility to secure US
leadership

High field magnets for DOE SC

COSMIC FRONTIER PHYSICS AT BERKELEY LAB

Completed DESI and LZ, new instruments for discovery in Dark Energy and Dark Matter, and launching CMB-S4

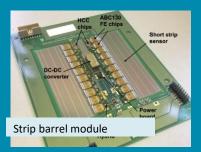
LZ: 20x increased sensitivity to dark matter

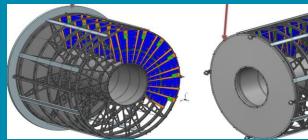

CD-4 awarded in September 2020; First science run in 2021

DESI: 20x increased precision in dark energy , + large scale structure and neutrino masses

CD-4 awarded in May 2020; five year survey starting this month

CMB-S4: most sensitive map of the early Universe

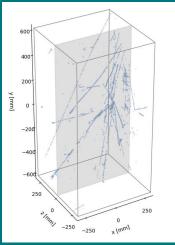

CD-0 awarded in 2019; LBNL selected as lead lab in August 2020


LBNL CONTRIBUTIONS TO THE ENERGY AND INTENSITY FRONTIERS

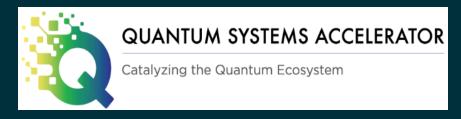
LHC: Contributing to ATLAS Si Strip and Pixel detectors and Global Mechanics

Pixel readout chip

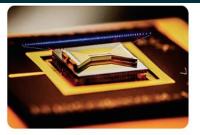
Upgraded LBNL Composites Facility will support fabrication of Global Mechanics

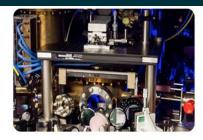

LBNL leads the LAr TPC Near Detector for LBNF/DUNE

Developed cryogenic pixelated readout ASIC (LArPix) for improved pattern recognition and tracking capabilities



Dan Dwyer
ECA Awardee and LAr TPC L2
Lead

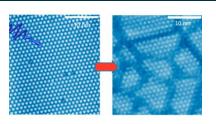

Module 0 Demonstration of LArPix v2 readout ASIC



Harnessing Quantum

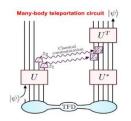
Programming Quantum

Engineering Quantum



Engaging Quantum

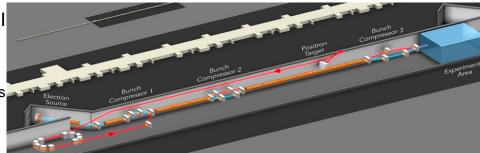

LBNL QUANTISED QUEST PROGRAM


Quantum Sensing For Dark Matter

Quantum Materials for Dark Matter

Quantum Computing For HEP

Quantum Information Theory

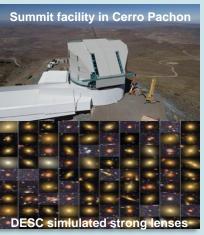


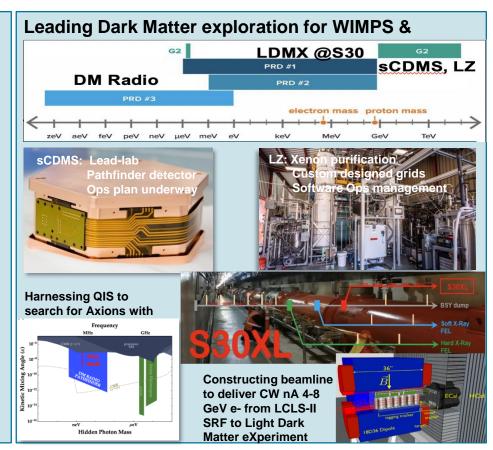
The Facility for Advanced Accelerator Experimental Tests II (FACET-II) is a National User Facility based on high-energy beams and their interaction with solids, plasmas and lasers

- SLAC
- Construction is complete
- Accelerator commissioning is ongoing
- Science program: 2021-2026

- Milestones in the DOE Advanced Accelerator Strategy Report define important areas of focus for the FACET-II facility:
 - preservation of beam quality and emittance, identifying techniques for positron acceleration in plasmas, developing plasma injectors as sources of ultra low-emittance beams.
- Machine Learning techniques will be leveraged to understand the complex beam dynamics of ultra-short bunches.
- FACET-II will train the next generation of leaders in accelerator physics.
- Results of the FACET-II science program will define a future demonstration facility FACET-III. FACET-III will focus on 1-2 long term R&D initiatives with high impact: supporting the DOE PWFA roadmap and beam physics of witnessignt bunches

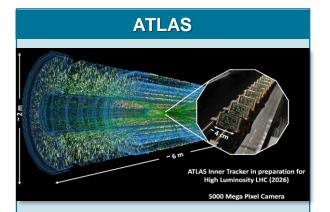
FACET-II is developing advanced concepts to increase accelerator performance by factors of 10-1,000.

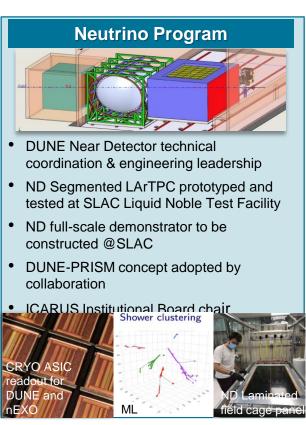

Probes of Dark Energy and Dark Matter at SLAC

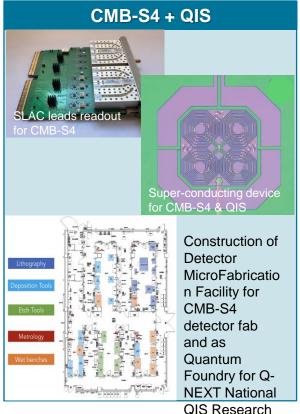

SLAC

Vera Rubin Observatory will perform 10-year Legacy Survey of Space and Time

- LSSTCam Nears Completion with CD-4 review planned for May 2021
- · Camera commissioning is underway in Chile
- Rubin U.S. Data Facility to be sited at SLAC
- Dark Energy Science Collaboration prepares for data






SLAC plays key role in broad suite of P5 projects and innovative instrumentation

SLAC

- · Pixel lead for U.S. ATLAS
- Assembly site of Inner Tracker pixel detector
- Inner Tracker pixels and global mechanics
- Leading role in defining Higgs self-couplings measurements

QIS Research Center

International engagements

苁

CRADA No. FRA-2020-0008 Annex A

"We were so impressed with US-Italy relationship in many scientific collaborations from mu2e to ICARUS and DUNE, from PIP-2 to the new SQMS Center"

Consul General Thomas Botzios

Fermilab-CERN signature ceremony of the MOU for a participation in the HL LHC Upgrade project, March 23

"This is another important milestone on our cooperation on the HL-LHC --- we are very proud of the work we do together with Fermilab, and we look forward to many more accomplishments."

— Fabiola Gianotti

INTERNATIONAL

COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT

FOR

BASIC SCIENCE COOPERATION

(HEREINAFTER "CRADA") NO. FRA-2020-0008

BY AND AMON

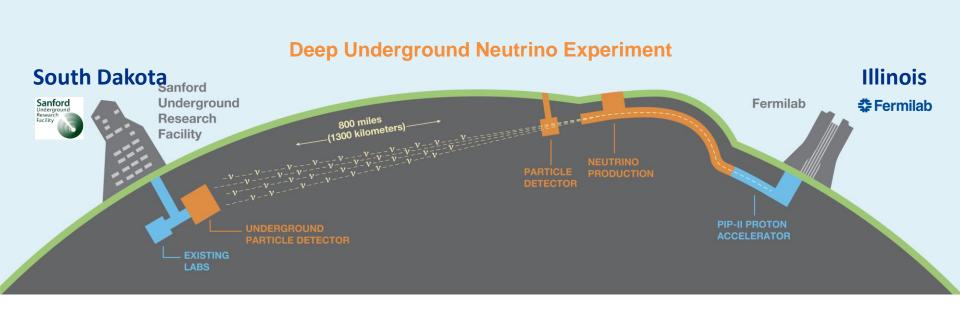
FERMI RESEARCH ALLIANCE, LLC
UNDER ITS U.S. DEPARIMENT OF ENERGY CONTRACT
NO. DE-ACCO-97CH11359
TO MANAGE AND OPERATE
FERMI NATIONAL ACCEL FERATOR LABORATORY

(HEREINAFTER "LABORATORY")

AND

TEL AVIV UNIVERSITY

Fermilab-Tel Aviv University, signed an i-CRADA, March 18


"Fermilab – Tel Aviv University collaboration on R&D activities for Sub-Electron-Noise Skipper-CCD Experimental Instrument (SENSEI; or Skipper-CCD) for pursuing dark matter searches in particle physics"

— Nigel Lockyer

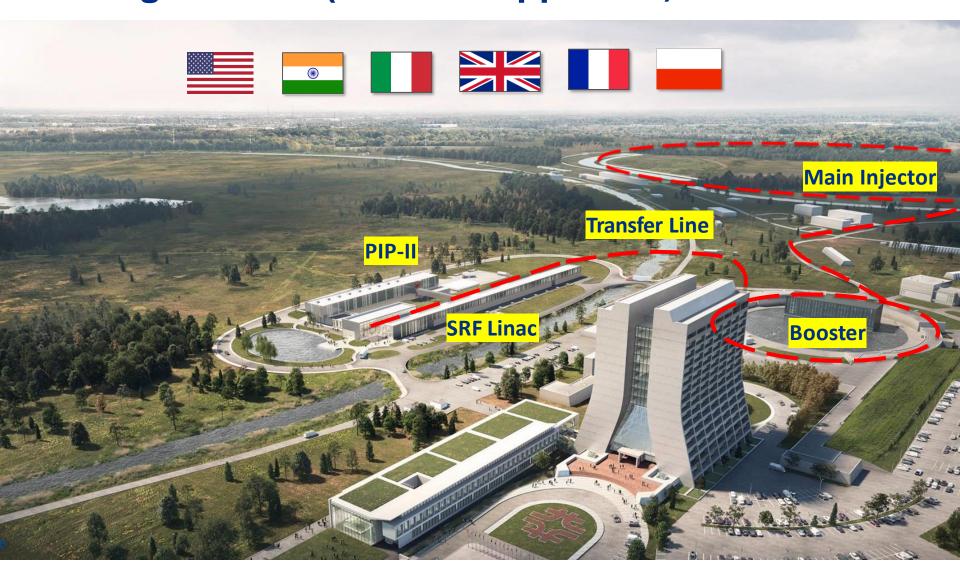
Science & Technology agreements – 10 I-CRADAs – 17 Multi-institutional MOU (SBN) - 1 Under discussion - 7 In planning - 2

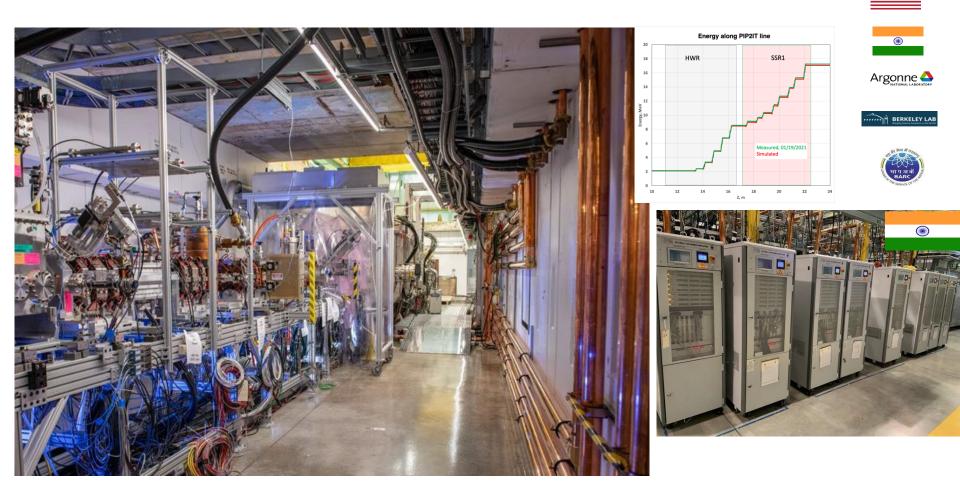
LBNF/DUNE Overview

Long-Baseline Neutrino Facility

LBNF will enable the United States to host the global high energy physics community to advance world class science into the fundamental nature of matter

Homestake Mine: Sanford Underground Research Facility home of Nobel Prize winning neutrino oscillation/solar neutrino puzzle experiment of Ray Davis

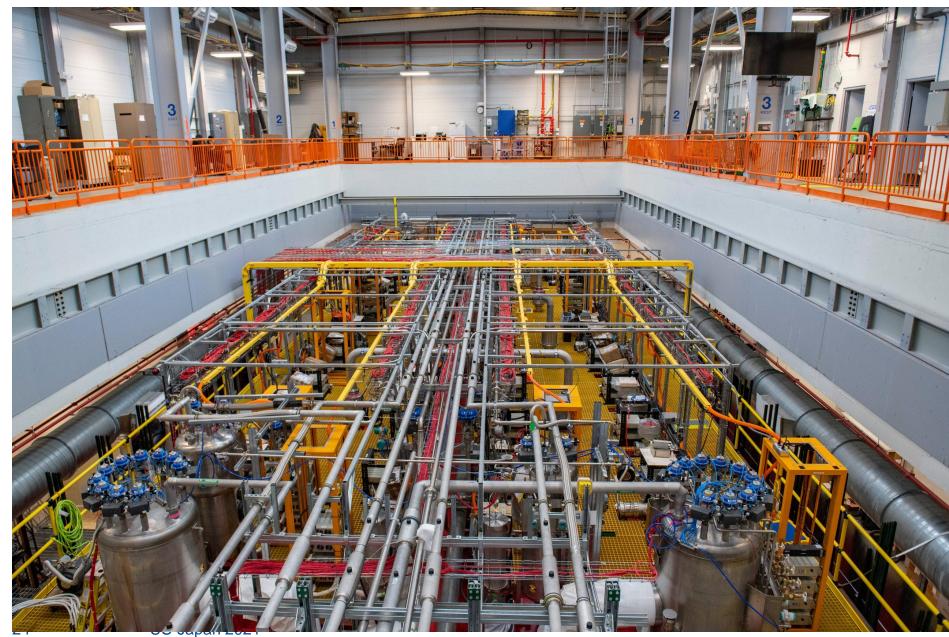


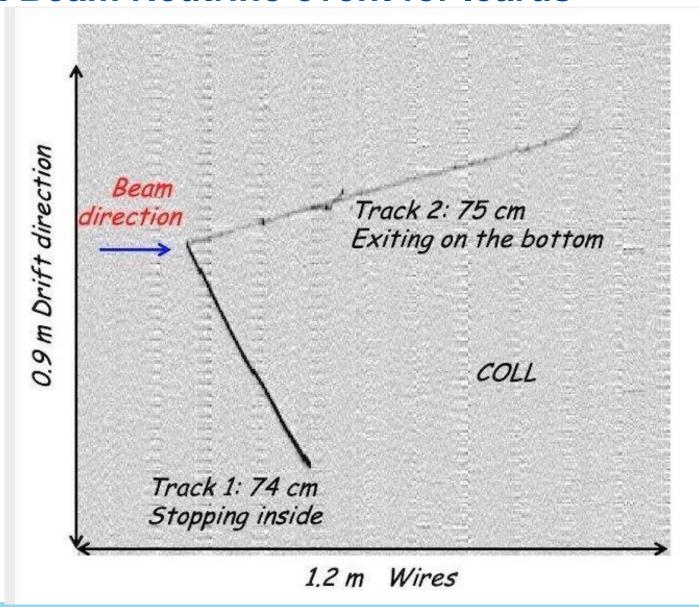

Fantastic ProtoDune performance at CERN

PIP-II gets CD-2 (baseline approved)

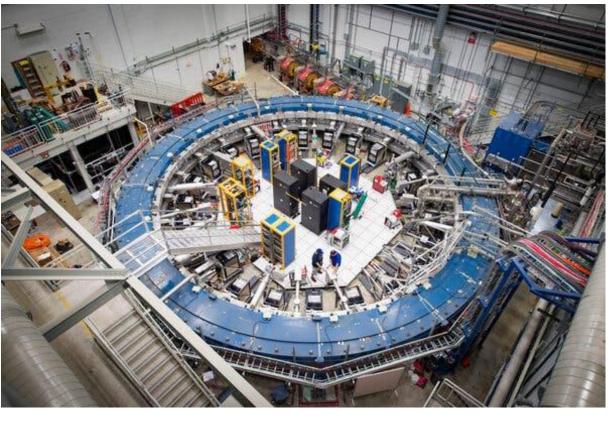
PIP-II Cryomodules accelerate beam to 17 MeV!

Significant Milestone: SRF cryomodules and accelerator systems demonstrate solid performance.

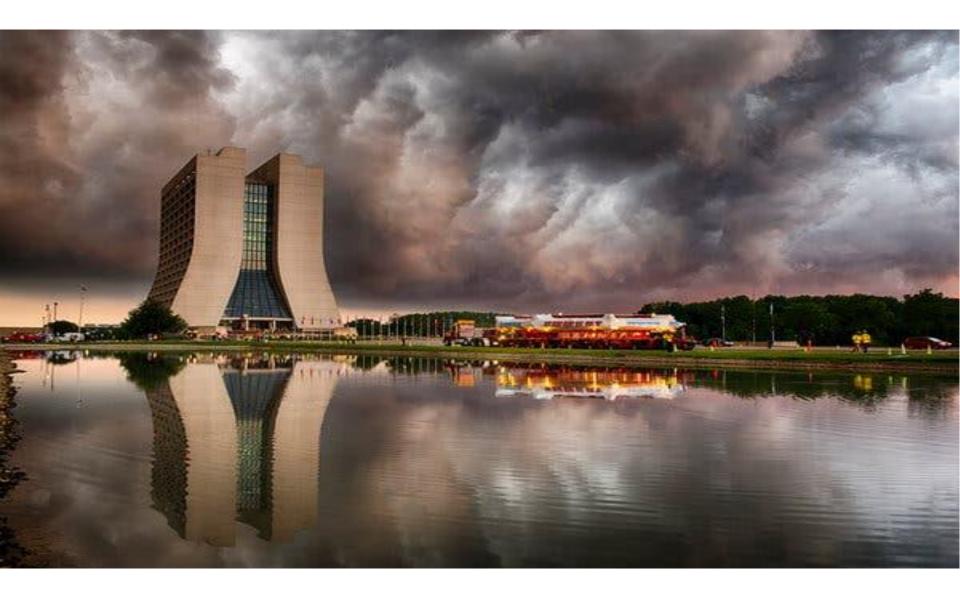

International partners' deliverables seamlessly integrated.



ICARUS Detector Short Baseline Neutrinos



First Beam Neutrino event for Icarus



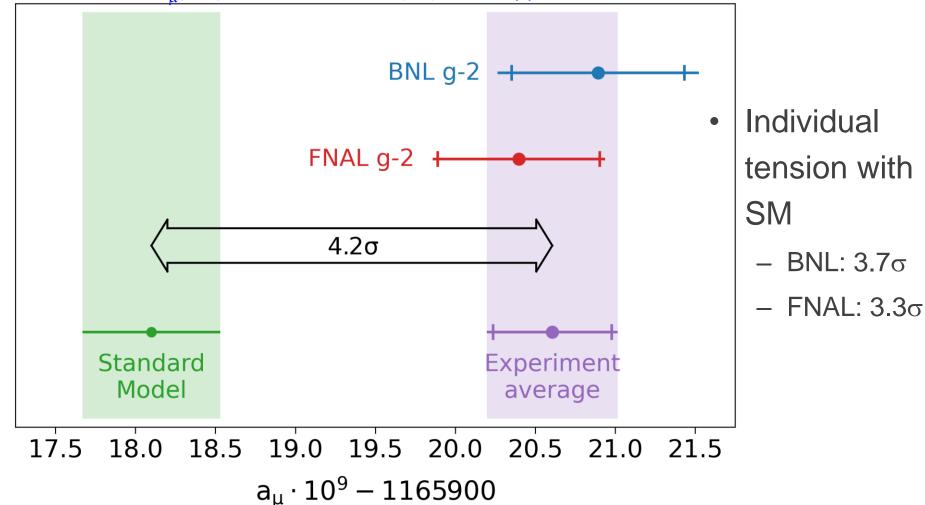
World-wide media reach was 5.2 billion people

Evidence is mounting that a tiny subatomic particle seems to be disobeying the known laws of physics, scientists announced on Wednesday, a finding that would open a vast and tantalizing hole in our understanding of the universe.

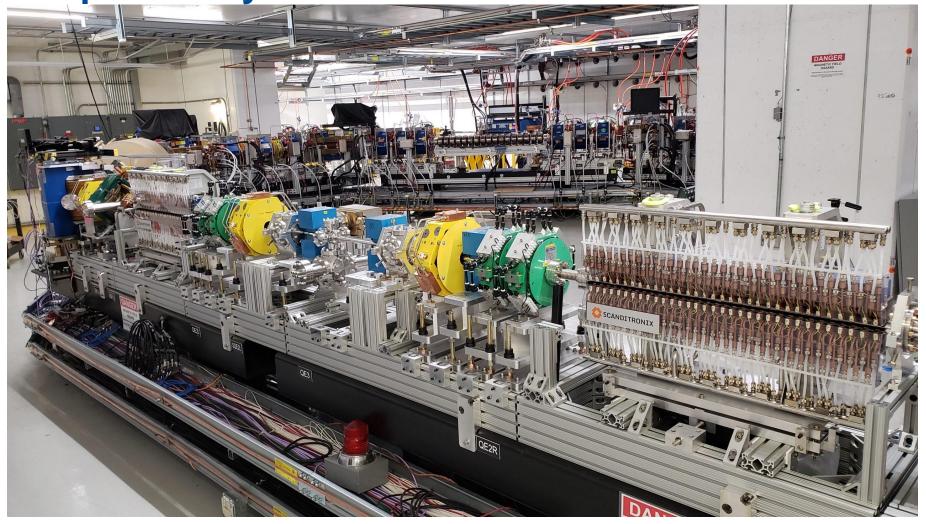
It is a world-wide effort

- Muon g-2 experiment: 237 members, 42 institutions across 7 countries
- Theory community that published the result on the prior page: 132 authors, 79 institutions across 20 countries
- Many other accelerator-based expts have provided inputs to theory 5 countries
 - Babar at SLAC (Stanford)
 - KLOE (phi-factory) in Italy
 - CMD/SND in Russia
 - Belle in Japan
 - BES in China

Some of the theorists


Some of the experimentalists

Comparison to SM prediction


 $a_{II}(SM) = 0.00116591810(43) \rightarrow 368 \text{ ppb}$

 $a_{II}(Exp) - a_{II}(SM) = 0.00000000251(59) \rightarrow 4.2\sigma$

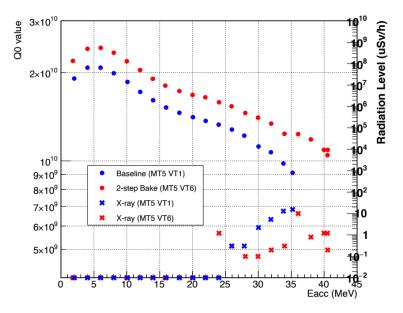
Coolest beams in town (stored a single electron)
Unique facility dedicated to R&D

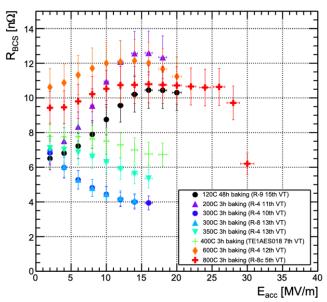
32 quadrupoles from JINR (Dubna) thank you

ILC High Gradient/High Q Low Cost Cryomodule

High gradient/high Q cryomodule – ILC cost reduction

- High gradient high Q cryomodule collaboration work ongoing, goal E_{acc} > 40 MV/m with Q > 1e10
 - 5 cavities qualified for the cryomodule with E_{acc} > 40 MV/m
 - Cavity treatment based on recent high gradient SRF R&D (cold EP, 2-step bake)
 - Rebuild of first SRF module assembled at FNAL in ~2007 (disassembly has started – see image)
- Collaboration includes FNAL, <u>JLab</u>, Cornell, KEK, DESY, <u>Saclay</u>, TRIUMF...
 - ILC cost reduction funds; outside US labs contribute in-kind on different aspects, from magnetic shielding, to surface treatments, to cryomodule and components design




Fermilab-KEK Collaborative SRF R&D Efforts

Fermilab and KEK SRF scientists share methods and results, and exchange cavities to further SRF R&D – joining efforts brings faster progress than working separately

KEK demonstration of Q_0 and E_{acc} improvement via 2-step bake developed at Fermilab

K. Umemori, Snowmass 2021, AF07 A. Grasselino et al., arxiv:1806.09824 (2018)

KEK building on mid-T bake developed at Fermilab to simpler, high performance furnace treatment

H. Ito et al, arxiv:2101.11892 (2021)

S. Posen et al., Phys. Rev. Applied 13, 014024 (2020)

Thanks very much to DOE, Natalie Roe, Joanne Hewett, Dmitri Denisov, and Rik Yoshida

33