Muon linac for the muon g-2/EDM experiment at J-PARC

Abstract

The muon g-2/EDM experiment at J-PARC (E34) aims to measure muon g-2 and EDM with unprecedented low-emittance muon beam realized by acceleration of thermal muons. Thanks to its low emittance, it can measure muon q-2 in a completely different way than FNAL or BNL. The muon linac accelerates muons from thermal energy (25 meV) to 212 MeV with electro-static extraction and four different radio-frequency cavity: RFQ, IH-DTL, DAW-CCL, and DLS. We succeeded in accelerating muons using the radio-frequency accelerator for the first time, and are now fabricating actual acceleration cavities. In this poster, demonstration of first muon acceleration and current status of the fabrication will be presented.

Introduction

- The anomaly of the muon g-2 g should be investigated to get a clue for new physics.
- J-PARC E34 experiment [3] aims to measure muon g-2 with completely different way than FNAL and BNL using unprecedented low-emittance muon beam.

Muon linac overview

- · The low-emittance muon beam realized by acceleration of thermal muon.
- Less emittance growth & loss is required to the linac to satisfy the requirement.
- One of the milestones was the demonstration of muon acceleration, which had never been Energy [MeV] 212 demonstrated before.

intensity [/s] repetition [Hz] Pulse [ns] 1.5 norm. ε $\lceil \pi \text{ mm mrad} \rceil$ 0.1 Δp [%]

First muon acceleration

- The muon cooling with formation of the negative muonium was developed for the demonstration [4].
- First muon acceleration using radio-frequency accelerator was demonstrated using proto-RFQ (53).
- The accelerated muon profile and bunch width were measured using the beam monitors [6, 7, 8].

(Radio-frequency quadrupole)

- The J-PARC H- linac spare will be used.
- Muon acceleration is confirmed by the simulation [9].
- High power test was done and ready for acceleration.

for acceleration

IH-DTL

(Interdigital H-mode drift tube linac)

- Designed using the alternative phase focusing scheme, to realize higher efficiency [10].
- The fabrication scheme and performance were confirmed with proto-type fill.
- The real IH-DTL was designed based on the experiences with the proto-type and is being fabricated.

DAW-CCL

(Disk and washer coupled-cell linac)

- Designed to cover wide range of velocity
- The Al cold model was fabricated and tested to confirm the design.
- Detail design for real DAW-CCL, such as bridge coupler etc., is being done.

First module is fabricated

(disk-loaded structure)

- Finish basic design [13]. Detailed design for the production of the actual machine is underway.
- Emittance and loss satisfies the requirement.

	Soa	RFQ	IH-DIL	DAW-CCL	DLS
Transmission	87	95	100	100	100
Decay loss	17	19	1	4	1
$\varepsilon_x \ [\pi \ \text{mm mrad, rms, normalized}]$	0.38	0.30	0.32	0.32	0.33
ε_y [π mm mrad, rms, normalized]	0.11	0.17	0.20	0.21	0.21
0.4	• x		St Esson	1	
0.4	- V		1		
	. ,		3000		9.7 MeV/c
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_		2500	Δp/p _{max} an	0.04%
· · ·	1		2000		
0.2 DAWCCL	DLS		1500		
RFO IH-DTL require	oment		1000		
£ ₁₀₀ =1	.5 x mm m	rad .	500		
0 10 20		30	256	259 300 301	300 300
0 10 20		Z[n		p	(MeV/c)

Detail design for fabrication is ready in

Acknowledgement

This work is supported by JSPS KAKENHI Grant Numbers JP25800164, JP15H03666, JP15H05742, JP16H03987, JP16J07784, JP18H03707, JP18J22129, JP19J21763, JP20J21440, and JP20H05625.

References

- [1] Phys. Rev. D 73 (2006) 072003
 - [3] PTEP 2019 (2019) 053C02
 - [4] Phys. Rev. AB 24 (2021) 033403
- - [5] Phys. Rev. AB 21 (2018) 050101
- [6] NIMA 899 (2018) 22-27
- 2] Phys. Rev. Lett. 126 (2021) 141801 [7] J. Phys. Conf. Ser. 1067 (2018) 052012 [12] J. Phys. Conf. Ser. 1350 (2019) 012097
 - [8] Phys. Rev. AB, 23 (2020) 022804
 - [9] Proc. of IPAC2015, p. 3801-3803
 - [10] Phys. Rev. AB 19 (2016) 040101
- [11] J. Phys. Conf. Ser. 1350 (2019) 012054
- [13] J. Phys. Conf. Ser. 875 (2017) 012054