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Laser-driven Ion Acceleration (Target Normal Sheath Acceleration* )
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❷ formation of sheath field ❸ ion acceleration  
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Some electron with lower energy can 
return to the rear surface region.  
The quasi-static sheath can be formed.

The quasi-static sheath field 
can accelerate ions to the 
target normal direction. 
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*S. C. Wilks, et. al., Physics of Plasmas (2001).

Rear side Rear side Rear sideFront side Front side

Electrons can be accelerated to the 
laser axis by the interaction. Then, 
solid target is positively charged.



Contamination layers on target surface degrade the acceleration performance
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electron
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formation of sheath field ion acceleration  by sheath field

Contamination layers mainly consist of hydrocarbon. Especially proton (charge to mass 
ratio:1) prior to other ions could be accelerated which results in decrease of acceleration 
efficiency of heavy ions from target.

in-situ formation of contamination-free target
Solution

We propose a method as surface cleaning and modification using a CW 
laser which heats a tape film target with micrometer scale thickness.

→



Micrometer thick scale tape film target

Nevertheless, the target holder with stepper motors can supply a fresh target 
with > 0.1 Hz. 

Side View Rear View

After PW laser shot (-1021 W/cm2) on target,  several mm holes on the tape were 
observed. Therefore, a few cm distance is required for each shot. 
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 Time-dependent thermal heat transport simulation 
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To confirm the measurement, we performed a time-dependent thermal heat transport simulation  
in polar coordinates with radial symmetric, including thermal conductivity and radiation.  
The simulations indicated a localized region several mm in size with a temperature beyond 100 ℃ as 
well as a smaller region with a temperature beyond 1000 ℃, showing good agreement with the IR 
thermography measurement. 

Simulation condition

Laser size (D4 σ) : 1 mm 

Laser Power: 1 W 

Absorption of the laser to Ti:  50% 

Target Materials: Ti 

Target thickness: 5 µm



5 µm thick Ti was heated up to 1000 ℃ during CW laser irradiation.

Ti Tape Target Holder

Heating condition

CW Laser wavelength: 532 nm 

CW Laser spot on target: Φ ~ 1 mm 

CW Laser Power: 1 W 

Target Material: Ti (Emissivity: 0.5) 

Target thickness: 5 µm

IR thermography shows CW laser heats Ti foil up to ~ 1000 ℃  

in the black point at the center of the white region. 

( The melting points of Ti: ~ 1670 ℃, TiO2: ~  1840 ℃)

20 mm

4 mm



Quadrupole mass spectrometer measurement 

In order to confirm the desorption of the contaminants from the Ti tape by the CW laser heating,  
heating, we also used a quadrupole mass spectrometer (QMS) as a residual gas analyzer. For this  
we also used a quadrupole mass spectrometer (QMS) as a residual gas analyzer.  
Emissions of hydrogen, hydrogen, hydroxide and carbon dioxide were observed after the CW laser 
heating began, providing supporting evidence that the technique can be used to desorb 
contaminants from the Ti tape. 

m/z = 44 (e.g. CO2)
m/z = 17 (e.g. OH )
m/z = 2 ( H2 )
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Heating condition for QMS

CW Laser wavelength: 532 nm 

CW Laser spot on target: Φ ~ 1 mm 

CW Laser Power: 0.3 W 

Target thickness: 5 µm



Ion-acceleration demonstration setup using a 5 µm Ti tape

Pulse Length: 40 fs (FWHM) 
Energy: ~ 10 J 
Spot Size: 1.5 µm (FWHM) 
Intensity: ~ 5 x 1021 W/cm2

J-KAREN*  Parameters

J-KAREN

*H. Kiriyama, et. al., Optics Letters (2018).
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Thomson Parabola (TP) Spectrometer Results

without the CW laser heating with the CW laser heating

C4+, O6+, C5+, O7+, C6+/O8+ and proton were observed without the CW laser heating. 

On the other hand, O6+, C5+, O7+ and C6+/O8+ were observed, but no proton signal was visible 
above the background level with the heating. Signal consistent with Ti ions is also observed with 
the CW laser heating. 



Thomson Parabola (TP) Spectrometer Results

In the case without the heating, the proton beam has a typical thermal-like thermal-like spectrum 
from the minimum detector cut-off of 11.5 ± 0.3 MeV to a maximum cut-off of 15.2 ± 0.4 MeV. A 
just-detectable oxygen beam is observed up to a maximum energy of 2.6 ± 0.1 MeV/u.  

On the other hand, the O6+ ions appear from 3.3 ± 0.1 MeV/u to 8.3 ± 0.5 MeV/u. The CW laser 
heating therefore not only increased the flux and energy of the O6+ ions, but also  
generated ions in a relatively narrow energy band (ΔE ~ 5 MeV/u). 
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Summary*

The target surface treatment by a CW laser is proposed for laser-driven 
heavy ion acceleration. That has potential to supply contamination-
free targets with high rep. rate.  

Laser-driven ion acceleration using a 5 µm Ti with CW laser heating 
was demonstrated for oxygen ion source. 

A Thomson parabola spectrometer provided evidence that oxygen 
ions were preferentially accelerated compared to the case without the 
CW laser heating. 

The experimental results indicate stable thin oxide layers on the 
surface of the Titanium foil can be accelerated when we apply the CW 
laser heating. 

*Kotaro Kondo et. al., Crystals (2020).


