Progress of Strangeness Nuclear Physics at J-PARC in 10 years

Mifuyu Ukai KEK IPNS/Tohoku Univ.

abstract

To study the baryon system such as the neutron star as well as nucleus, understanding of baryon-baryon interaction, in particular, hyperon-nucleon and hyperon-hyperon interaction is essential.

High intensity and high purity Kaon beam is available at J-PARC Hadron Experimental Facility K1.8 and K1.8BR beam lines. Strangeness nuclear physics programs are vigorously performed in this ten years.

Three prominent progress of strangeness nuclear physics at J-PARC HEF are introduced in this paper.

Charge symmetry breaking in ΛN interaction via the gamma-ray spectroscopy of hypernuclei
Origin of the nuclear repulsive core via the Σp scattering experiment
ΞN interaction study via the hybrid emulsion experiment
Motivation of **Strangeness** nuclear physics

Hyperon nucleon (YN) and hyperon-hyperon (YY) interaction study

Strange Hadronic Matter in neutron star?
Hyperon’s appearance is reasonable scenario

How can we reconcile?

- Softening of EOS w/ hyperon appearance
- Two-solar-mass NS

Accumulation of YN and YY interaction data is essential
Strangeness Nuclear Physics programs at J-PARC Hadron Experimental Facility

K1.8
- **2 stage electrostatic separator**
- Up to 2 GeV/c beam

<table>
<thead>
<tr>
<th>System</th>
<th>Experiments</th>
</tr>
</thead>
</table>
| $S=-1$ | - Λ hypernuclear γ-ray spectroscopy
- Neutron rich Λ hypernuclei search
- Σp scattering experiment
- Σ hypernuclear spectroscopy
- Kaonic nuclei search |
| $S=-2$ | - Hybrid emulsion experiment
- Ξ hypernuclear spectroscopy
- Ξ atom X-ray spectroscopy |

K1.8BR
- **1 stage electrostatic separator**
- Up to 1 GeV/c beam

<table>
<thead>
<tr>
<th>System</th>
<th>Experiments</th>
</tr>
</thead>
</table>
| $S=-1$ | - Kaonic nuclei search
- Kaonic atom X-ray spectroscopy
- Hypertriton lifetime measurement |
Study of Charge symmetry breaking in ΛN interaction via the gamma-ray spectroscopy of Λ hypernuclei
Study of Charge symmetry breaking in ΛN interaction via the gamma-ray spectroscopy of Λ hypernuclei

Charge symmetry breaking between Λp and Λn interaction and its spin dependence is confirmed.
Study of origin of the nuclear repulsive core via the Σ^+p scattering experiment

$\Sigma^+ + p \to \Sigma^+ + p'$

$p(\pi^-, K^+)\Sigma^+$

$\Sigma^+ \to p + \pi^0$

Beam π^+
$p_{\pi^+} = 1.4$ GeV/c

H$_2$ target

$Scatt. K^+$
$p_K \sim 0.8$ GeV/c

KURAMA (Dipole magnet)

CFT + BGO

Scintillation fiber tracker

Calorimeter

CATCH

$\Sigma\pi$ scattering

Σ production

1. Momentum of Σ
2. Scattering angle
3. Energy of proton

Σ^p scattering ID
CATCH
CFT + BGO
Study of origin of the nuclear repulsive core via the Σ^+p scattering experiment

Why Σ^+p scattering?

Σ^+p data analysis is now under going.

Large repulsive core is expected in Lattice QCD

Large $d\sigma/d\Omega$ is predicted

First result of J-PARC E40 (Σ^-p result) published in Oct. 28th 2021
K. Miwa et al, PRC 104,045204(2021)
Study of $S=-2$ ΞN interaction via the hybrid emulsion experiment

$Scatt.\ K^+\ \ \ \ p_K\sim 1.2\ \ GeV/c$

$Beam\ K^-\ \ \ \ p_K=1.8\ \ GeV/c$

"$p"(K^-,\ K^+)\ "\Xi-"

Reaction in the C target

Recoiled Ξ^- travel from C target to nuclear emulsion

Stopped Ξ^- capture in the atomic orbit of nucleus of nuclear emulsion

After de-exitation in atomic orbit, X^- is absorbed by nuclei

$(\Xi N \rightarrow \Lambda \Lambda : Q \text{ value } = 23\ \text{MeV})$

p in Carbon target

As quasi free production

Nuclear emulsion

Carbon target
Study of $S=-2 \ \Xi N$ interaction via the hybrid emulsion experiment

Irrawaddy event: Twin Λ hypernuclear event

Ξ^- captured and absorbed on ^{14}N

$^{14}\text{N} + \Xi^- \rightarrow ^{15}\Xi^-\text{C}$

$\rightarrow ^5\Lambda\text{He} + ^5\Lambda\text{He} + ^4\text{He} + n$

$\Xi^- \text{ binding energy of } ^{14}\text{N} + \Xi^- \text{ system found in emulsion}$

M. Yoshimoto et al., PTEP2021, 073D02 (2021)

First observation of a nuclear 1s state of the Ξ-hypernucleus

- Weakly attractive ΞN interaction
- Very weak $\Xi N \rightarrow \Lambda\Lambda$ conversion width
Future prospect of Strangeness Nuclear Physics

Existing hall

- K1.8
- HIHR
- K1.1
- KOTO2
- High-p/π20
- COMET

Extension plan

- K10
- HIHR

Existing hall:
- HIHR
- High resolution spectroscopy of hypernuclei
- ΛNN three body interaction (P84)

Extension plan:
- K1.1 (existing or extended hall)
- Λπ scattering experiment (P86)
- gamma-ray spectroscopy of hypernuclei
- g-factor of Λ in hypernuclei (E63)
- Charge symmetry breaking (E63)
- Λ hypernuclear β decay (LOI)

π20
- Λπ scattering experiment (LOI)