

TOF measurement of neutron capture cross section of Re-185 in keV region

Yaoki Sato*, Tatsuya Katabuchi*, Karin Takebe*, Nobuyuki Iwamoto**

*Tokyo Institute of Technology, **Japan Atomic Energy Agency

Background

Use of Rhenium

- >Rhenium has been utilized in various sectors including metallurgy, nuclear medicine and astrophysics.
- Alloy containing Re are one of the attractive candidate of space reactors and fusion reactors.
- ▶ Re-185 and Re-186 are utilized as a component of radiopharmacecuticals.
- > Re-Os pair is one of the candidates of cosmo-chronometers.

Current situation of capture cross section data of Re-185

- >Limited number of experimental data of Re-185 is currently available.
- ➤ Most of the experiments were conducted by using activation method.
- ➤ There is only one experiment which used Time-of-flight(TOF) method.
- There are large discrepancy in trend of capture cross section, which up to 19% in keV region.
- ➤ Precise measurements are required, since an accurate cross section data is needed, especially in the field of astrophysics.

Experimental setup

- The experiment was conducted by using 3 MV Pelletron accelerator at the Tokyo institute of technology.
- A pulsed neutron beam was generated by bombarding a 1.5 nsec pulsed proton beam to the Lithium target.
- The gamma ray was detected by an anti-Compton NaI(TI) detector, oriented at 125 degree to the proton beam.
- ➤ Neutron energy spectrum were obtained by Li glass detector.

Analysis method

Time of flight (TOF) method

>The neutron energy spectrum were obtained by using time of flight method.

$$E_n = \left[\frac{72.3L}{T_n}\right]^2 \qquad T_n = t_{ch}(I_{\gamma} - I_n) + \frac{L}{c}$$

 E_n : Energy of neutron[MeV], T_n : Flight time[ns],L:Flight length[m],

 I_{γ} : Channel of gamma ray detection[ch], I_n : Channel of neutron detection[ch], t_{ch} : time per channel[ns/ch],

c: speed of light[m/s]

Fig 3 Neutron spectra

Table1 Gate information

Gate No.	Enegy range[keV]	Ave. Enegy [keV]	
1	15.0-25.0	20.1	
2	25.0-35.0	29.9	
3	35.0-55.0	44.0	
4	55.0-90.0	66.9	
Total	15.0-90.0	45.4	

Analysis method

Pulse height weighting method with impurity

From obtained pulse height spectrum, the capture cross section was obtained. Attributions of impurities of the sample were subtracted by following equation.

$$<\sigma_{t}> = \frac{\sum_{I} W(I)S(I)}{(B_{nt} + E_{nt})N_{t}C_{t}\phi} - \frac{\sum_{i} N_{i}C_{i}(B_{ni} + E_{ni}) < \sigma_{i}>}{(B_{nt} + E_{nt})N_{t}C_{t}}$$

W(I): Weighting function, S(I): Pulse heigh spectra, B_n : Neutron binding energy[MeV], E_n : Incoming neutron energy[MeV], N:Number of atoms per area[/ cm^2], C: Correction factor for neutron transportations

Fig 4-1 Pulse heigh spectrum

Fig 4-2 Net Pulse heigh spectrum

Fig 5 Weighting functions

Results

Tokyo Tech

Table2 Cross section values

Gate No.	Cross section [b]	Error [%]
1	1.561	5.38
2	1.229	4.85
3	1.012	4.58
4	0.849	4.71

Fig.6 Current results and comparison

Comparison with the previous results

- The present result shows a trend similar to the one by Bergman et.al.
- The present result provide a data set with the highest energy point which measured by TOF method.
- The present result has errors smaller than the previous experiments.

Error propagation

- The largest factor of the uncertainty is the standard cross section which is 3.05%.
- ➤ Statistical errors are the second largest which are from 1.12% to 2.44%.
- ➤ The effect of the uncertainty of cross sections of Re-187 which were used for impurity correction, is as small as 0.35%.

Conclusion

Re-evaluation

- Capture cross section in keV region was re-evaluated by Iwamoto Nobuyuki san, JAEA.
- The two sets of evaluated nuclear data of Re-185 currently available follow different trends of experimental data as shown in Fig.5.
- >Using the present results, the neutron capture cross section was re-evaluated.
- >The current evaluation shows a trend similar to the ENDF/B VII.

MACS calculation

- The Maxwellian-averaged cross sections were calculated by using the current data set.
- The cross section value at 30 keV was about 10% smaller than the KADoNIS recommendation.
- MACS at 30 keV by using other evaluated data are also available on KADONIS.

 Table 3 MACS at 30 KeV

KADoNiS 1.0	1.439E+58.0 mb	JEFF-3.1	1.06E+3 mb
ENDF/B-VII.0	1.06E+3 mb	Current	1.30E+3 mb

Fig.6 Current results and comparison

Fig 7 MACS comparison