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Motivation

String theory is a powerful extension of quantum field theory, but extracting

low-energy physics from string geometry is mathematically challenging...

Higher dimensional theory → String Comp. → 4d physics

Need a good toolkit in any corner of

string theory to extract the full low

energy physics: (e.g. the mass of the

electron?)

Rules for “top down” model

building?

Patterns/Constraints/Predictions?

String Pheno
String 
Comp.

4d Eff. Theories

Tuesday, May 21, 2013

What possible EFTs?

m
Which geometries?

Today: Progress in N = 1, 4D Heterotic String Compactifications...

Lara Anderson (Virginia Tech) Progress in Heterotic Compactification KEK Theory Workshop 2021 2 / 27



Heterotic in a nutshell

Heterotic compactifications amongst earliest approaches to string pheno

(Candelas, Horowitz, Strominger, Witten).

The basic idea: E8 × E8 YM coupled to SUGRA in 10D

=⇒ Solutions of the form R1,3 × X with X a compact, 6-dimensional

manifold (with gauge field vevs ⊂ E8 over X )

=⇒ Leads to a 4D GUT. (coupled to SUGRA).

GUT group can be broken to Standard Model symmetry: E.g.

SU(5)→ SU(3)× SU(2)× U(1). (i.e. via Wilson lines, Hypercharge flux,

etc., Higgs mechanism, etc)
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A sketch of Heterotic pheno

All matter descending from the adjoint of E8 in 10D ⇒ possible to obtain

exact charged matter spectrum of the standard model (or MSSM, etc). ⇒
Major effort in recent years to create Heterotic SM database (∼ 107

models). (LA, Gray, Lukas, Palti).

Gravitationally mediated SUSY breaking (in ‘hidden sector’ E8).

Heterotic GUT features significant improvement on field theory GUTs ⇒
no problematic relationships on couplings, color doublet/triplet splitting,

etc.
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But...

In broad brush strokes, this all looks promising! But... there are several

major catches.

Don’t fully know necessary ingredients to work out theory ⇒ Calabi-Yau

(Ricci flat) metric and Hermitian-Yang-Mills bundle connection unknown

analytically.

Need a compelling mechanism for stabilization of geometric moduli (this is

coupled to the problem of SUSY breaking). Ideas: Bundle/manifold

interplay, Fractional Chern Simons fluxes (Gukov, et al), etc. ⇒

Incomplete.
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Summary of Heterotic Geometry:

The geometric ingredients include:

A complex 3-fold, X ⇒ SU(3) Structure Manifold (solution of

Hull-Strominger System).

Two principle Hi -bundles, (V1,V2) on X (with structure group Hi ⊂ E8).

Leading to a collection of holomorphic, Mumford (poly)-stable vector

bundles: Vi ,Vi
∨,∧2Vi , . . . etc.

Compactifying on X leads to N = 1 SUSY in 4D, while V breaks

E8 → H × G (Hi are the structure groups of Vi )

E.g. H = SU(n), n = 3, 4, 5 leads to G = E6, SO(10), SU(5)

Anomaly Cancellation: ch2(TX ) = ch2(V1) + ch2(V2) + [W ]eff

Matter and Moduli: Modes of V -twisted Dirac Operator: /∇X Ψ = 0

H-charged matter, h1(X ,V ), h1(X ,V∨), h1(X ,∧2V ), . . .

X ⇒ h1,1(X ) (Kähler), h2,1(X ) (Complex structure), V ⇒ h1(X ,End0(V ))

(Bundle).
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Determining the 4D theory in string compactification

Physical quantities in low energy string theory depend on the metric and

gauge connections in the extra dimensions.

For example:

Yukawa couplings in Heterotic string theory descend from a term in the

10-dimensional action of the form ∼
∫
d10√−g ψ̄Aψ. Normalization of

fields and coefficients of the superpotential depend on g .

I.e. Defining the perturbative theory around a background:

Ab = A0
b + φI v x

IbTx + . . .

where vI is the bundle valued harmonic 1-form on compact 6D space X

which counts the multiplicity of the 4D fields φI .

Superpotential tri-linear coupling λIJKφ
IφJφK is given by the integral

λIJK ∼
∫

X

vI ∧ vJ ∧ vK ∧ Ω
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Particle masses/couplings

Interested in

Particle masses/couplings.

Textures/hierarchies: Standard model (Heavy top quark), SUSY “mu

problem” (want to forbid a mass term allowed by gauge symmetry, i.e.

µHdHu), Forbid rapid proton decay operators, etc...

Major obstacle: Matter field Kahler potential unknown except for special

cases.

GIJ =
1

2(Vol(X ))

∫
X

vI ∧ ?V vJ

Easiest class of solutions for X a complex, Kahler manifold: Ricci flat

metric ⇒ i.e. a Calabi-Yau manifold

How to determine the metric and the connection?

Only current viable approach via ⇒ numeric approximation.
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The Donaldson Algorithm

Idea: Use projective embeddings to generate simple metrics that can be

parametrically tuned to the Ricci-flat solution.

Kodaira embedding: Given an ample line bundle L on X then an
embedding

ik : X → Pnk−1
, (x0, . . . , x2) 7→

[
s0(x) : . . . : snk−1(x)

]
exists for all Lk = L⊗k with k ≥ k0 for some k0, where sα ∈ H0(X ,Lk ).

What do we know about metrics on Pn? Fubini-Study:

(gFS )i j̄ =
i

2
∂i ∂̄j̄KFS where KFS =

1

π
ln
∑

i j̄

hi j̄zi z̄j̄

and hi j̄ is a non-singular, hermitian matrix.

FS metric restricted to X is not Ricci-flat. But...
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Generalize: Kh,k = 1
kπ ln

∑nk−1
α,β̄=0

hαβ̄sαs̄β̄ = ln ||s||2h,k
hαβ̄ is a hermitian fiber metric on L⊗k .

Such Kähler potentials are dense in the moduli space (Tian)

Fixed point of Donaldson’s “T-operator” ↔ “balanced metric”.

T (h)αβ̄ = nk

VolCY (X )

∫
X

sα s̄β̄∑
γδ̄ hγδ̄sγ s̄δ̄

dVolCY

Theorem (Donaldson)

For each k ≥ 1, the balanced metric, h, on L⊗k exists and is unique. As k →∞,
the sequence of metrics

g
(k)

i j̄
=

1

kπ
∂i ∂̄j̄ ln

nk−1∑
α,β̄=0

hαβ̄sα s̄β̄

on X converges to the unique Ricci-flat metric for the given Kähler class and

complex structure.
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A new approach

Existing numeric implementations of Donaldson’s algorithm (Douglas et

al, Ovrut et al). Computationally intensive. (Accurate enough? Don’t

know...)

Moduli dependence difficult to obtain.

New Approach ⇒ Machine Learning . What we did:

1 Supervised learning of moduli dependence of Calabi-Yau metrics using

the Donaldson algorithm to generate training data.

2 Direct learning of moduli dependent Calabi-Yau metrics both using the

metric ansatz and without it.

3 Direct learning of metrics associated to SU(3) structures with torsion.

I’ll give a brief flavor of these results...(see also, (Douglas et al), (Jejjala,

et al))(More recent: package by Ruehle, Lukas, et al).
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Preliminaries

One definition of a Calabi-Yau three-fold: A complex 3-fold admitting a

nowhere vanishing real two-form, J, and a complex three-form, Ω, such

that:

J ∧ Ω = 0 J ∧ J ∧ J =
3i

4
Ω ∧ Ω

dJ = 0 dΩ = 0

Metric is related to the two form as igab̄ = Jab̄

Example CY manifold: “Quintic” hypersurface: X = P4[5]

e.g. p(~z) = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + ψz0z1z2z3z4 = 0

The holomorphic (3, 0) form can explicitly constructed for such manifolds
(Candelas, et al).

Ω =
1

∂pψ(~z)/∂zb

∧
c=0,...3,

c 6=a,b

dzc
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Direct Learning of the Kahler Potential

The balanced metric output by Donaldson’s algorithm at given finite k is

not necessarily the most accurate approximation to the Ricci-flat metric -

maybe we can do better?

Can generate networks to find the parameters that are trained directly

using a loss such as:

LMA =

∣∣∣∣1 +
4i

3

J3

Ω ∧ Ω

∣∣∣∣
C.f.: Headrick and Nassar (although note that we are obtaining moduli

dependent results and using ML). Network Architecture:

Layer Number of Nodes Activation Number of Parameters

input 17 – –

hidden 1 100 leaky ReLU 1800

hidden 2 100 leaky ReLU 10 100

hidden 3 100 leaky ReLU 10 100

output d2 identity 101 d2
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These networks were optimized for 0 ≤ |ψ| ≤ 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
| |

10 2

10 1 Donaldson k = 6

Donaldson at k = 12, = 0

DenseModel-1 DenseModel-3

101 102 103

| |

10 1

100

Accuracy for
DenseModel-1
DenseModel-2
Donaldson k=6
Extrapolation from = 100

(shaded region denotes extrapolation of the networks).

Note Donaldson algorithm with k = 12 takes order days to run even for

the single case of ψ = 0. This network at k = 6 takes only minutes and

gives comparable accuracy for a whole range of ψ.

We do better than Donaldson Alg. at k = 6 and that this improvement

extends up to |ψ| ' 175, nearly a factor of 2 beyond the regime used

during training.
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Direct learning of the metric

Instead of learning parameters in an ansatz for the Kahler potential we

can try to learn the CY metric directly.

Why try?

Perhaps we can improve performance by not being tied to an ansatz at

fixed k.

We will be able to generalize this approach to more complicated

geometries.

One disadvantage:

We now need loss functions to check that the metric is globally well

defined and Kahler! We use L = λ1LMA + λ2LdJ + λ3Loverlap

Here LMA is the loss described before and we add to this

LdJ =
1

2
||dJ||1

Loverlap =
1

d

∑
k,j

∣∣∣∣g (k)
NN(~z)− Tjk (~z) · g (j)

NN(~z) · T†jk (~̄z)
∣∣∣∣

n
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Input: Re(zi ), Im(zi ) (homogeneous coords describing pt in CY)

Re(ψ), Im(ψ). Output: d2 real and imaginary parts of a metric at point.

To give a concrete example: optimized at ψ = 10 on a data set of 10, 000

points. We split the points according to train:test=90 : 10 and we train

for 20 epochs.

Accuracy reaches same level as Donaldson Alg. at k = 5 (we expect more

points and better architecture will easily improve this).

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

Left: Optimizing the NN with all three losses. Middle: Optimizing the NN without Kähler loss

(i.e. λ2 = 0). Right: Optimizing the NN without overlap loss (i.e. λ3 = 0).
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Learning SU(3) structures from an anzatz

Important reason to directly learn the metric: Can be generalized to

non-Kähler geometry!

One important class of geometries for N = 1 compactifications: SU(3)

structure manifolds

These are six-manifolds with a nowhere vanishing two form J and three

form Ω obeying the same algebraic properties as the Calabi-Yau threefold

case:

J ∧ Ω = 0 J ∧ J ∧ J =
3i

4
Ω ∧ Ω

But with different differential properties...

An SU(3) structure can be classified by its torsion classes:

dJ = −3

2
Im(W1Ω) + W4 ∧ J + W3

dΩ = W1J ∧ J + W2 ∧ J + W5 ∧ Ω ,
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Where torsion classes are given the defining forms:

W1 = −1

6
iΩydJ =

1

12
J2ydΩ , W4 =

1

2
JydJ , W5 = −1

2
Ω+ydΩ+

Given string theories place different constraints on the torsion classes for

there to be an associated solution to the theory of the type we want.

E.g. heterotic string theory: W1 = W2 = 0, W4 = 1
2W5 = dφ, W3 free.

Note that a CY structure is a special case: Wi = 0 ∀i = 1, . . . 5.

Need to start with some well-controlled/simple example.

Observation: Some CY manifolds admit not only Ricci-flat metrics, but

other SU(3) structures as well.

E.g. (generalization of work by Larfors, Lukas and Ruehle)

J =

h1,1(x)∑
i=1

aiJi Ω = A1Ω0 + A2Ω̄0

The ai are real functions and A1 and A2 are complex functions. CY taken

to be a complete intersection in a product of projective spaces.
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Quintic E.g. (from Larfors, et al)

a1 =
1

π3

|∇p|2
σ4

, A1 = a2
1 , A2 = 0 , (where σ =

4∑
a=0

|za|2 )

with p the defining equation of the hypersurface.

This has torsion classes W1 = W2 = W3 = 0, W5 = 2W4 = 2d(ln(a1)) and

thus provides a solution to heterotic string theory.

We aimed to reproduce this known analytic solution using direct learning

of the metric.

Such a check is particularly important in learning such metrics as we have

no analogue of Yau’s theorem to use to argue we are converging towards

an exact/unique solution.
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Can use the same losses as in the Calabi-Yau case, then, with the

exception of replacing the Kahler loss by the following.

LW4 = ‖dJ − dln(a1 ∧ J)‖n

We ran this for the ψ = 10 quintic, using multiplicative boosting from gFS .

0 2 4 6 8 101214161820222426283032343638404244464850

epoch

100

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total
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Topological Vanishings

In general: to understand heterotic effective theories, we need

a) Good tools to effectively compute couplings/masses

b) Ways to study/predict general structure (which could lead to

hierarchies like those above).

Observation: Heterotic theories can exhibit “Topological Vanishings”

(i.e. vanishing couplings that must be zero due to the structure of the

geometric background (X ,V ), rather than gauge invariance)

Goals:

Understand what geometric effects can lead to topological vanishings

How can these geometric effects differ/be related?

How generic are such vanishings?

Hidden symmetries?
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Algebraic vs. Differential Geometry Approaches

How to actually compute?

First E.g.s, V = TX here some Yukawa couplings are simply triple

intersection numbers (drst = Dr ∩ Ds ∩ Dt) and can use mirror symmetry

(Strominger, Candelas,. . .)

Algebro-geometric approach: Can show that integral form of λIJK is 1-1

with a triple product in cohomology (i.e. a Cup/Yoneda product). Eg.

for 273 coupling in an E6-theory:

H1(X ,V )× H1(X ,V )× H1(X ,V )→ H3(X ,∧3V ) ' C

Given algebraic representation of H1(X ,V ), can turn this into a problem

in polynomial multiplication (i.e. Groebner basis calculation). (Distler, et

al),(Ovrut, Donagi, Pantev, et al), (LA, Gray, Lukas-et al...)
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Algebraic vs. Differential Geometry Approaches

Differential Geometry Approach (Blesneag, et al):

E.g. Suppose X ⊂ A = Pn1 × . . .× Pnm is defined via p(x) = 0 and the

bundles/forms descend from objects on A:

λ(v1, v2, v3) ∼ − 1

2i

∫
A
v̂1 ∧ v̂2 ∧ v̂3 ∧ δ2(p)dp ∧ dp̄

with δ2(p) is a delta-function current satisfying

δ2(p)dp̄ =
1

π
∂̄(

1

p
)

Defining Ω̂ ∧ dp = µ one has an explicit form

λ(v1, v2, v3) = − 1

2πi

∫
A

µ

p
∧
[
∂̄v̂1 ∧ v̂2 ∧ v̂3 − v̂1 ∧ ∂̄v̂2 ∧ v̂3 + v̂1 ∧ v̂2 ∧ ∂̄v̂3

]
note: v̂I is not necessarily closed. Can easily see that some couplings must

vanish.
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A homological algebra framework

We proved a number of theorems, only give a flavor here:

Theorem : Given any resolution

. . .→ F2 → F1 → F0 → VX → 0

can define a notion of ‘type’ for elements of H1(VX ). Namely, a

cohomology element has type τ = i if it descends from H i (Fi−1). Then if

H3(∧3F0) = 0, all trilinear couplings between τ = 1 fields will vanish. If,

in addition, H4(F1 ⊗ ∧2F0) = 0, then all Yukawa couplings between one

type τ = 2 and two type τ = 1 fields will also vanish.

Special case: (Generalization of work of Blesneag, et al): Koszul

resolution for X ⊂ A (a complete intersection in co-dimension k):

0→ ∧kN∨ ⊗ V → ∧k−1N∨ ⊗ V → . . .→ V → VX → 0
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Geometric origins for topological vanishings

There are three main classes of geometric structures in the literature that

lead to vanishing criteria (not necessarily exhaustive)

Broadly, constraints arise from either – the manifold – and/or – the

bundle. These include constraints on couplings due to

1 The description of the CY manifold inside an ambient space (i.e. as a toric

complete intersection) (Candelas, Lukas, et al)

2 The description of the CY manifold as a fibration (Braun, Pantev, Ovrut,

Donagi, et al),(Bouchard, Cvetic, Donagi), etc

3 The stability of the bundle and Kähler cone substructure (i.e. “stability

walls”) (Watari et al), (LA, Gray, Ovrut)

Homological algebra tools can also describe fibrations/stability walls.

Simple Question: Given diverse geometric origins for topological

vanishings of Yukawa couplings, must different descriptions agree? ⇒ No.
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Genericity of vanishing criteria

0 100 200 300 400 500
h110

100

200

300

400

500
h21

Figure 2: The 7524 distinct Hodge number pairs for generic elliptically fibered Calabi-Yau threefolds over

toric bases (dark/blue data points). Plot axes are Hodge numbers h11, h21. Kreuzer-Skarke Hodge pairs

are shown in background in light gray for comparison.

parameter T = k−3 is useful in characterizing the complexity of the base. The models with

T = 0, 1 are P2 and the Hirzebruch surfaces, and all lie on the left-hand side of the diagram,

ranging from F0, F1, and F2, which all have Hodge numbers (h11, h21) = (3, 243), and P2

with Hodge numbers (2, 272) to F12 with Hodge numbers (11, 491). As more points are

blown up, T increases, as does the rank of the gauge group, so h11 monotonically increases.

At the same time, h21 monotonically decreases along any blow-up sequence. The change

in h21 denotes the number of free parameters that must be tuned in the Weierstrass model

over a given base to effect a blow-up. Note that the monotonic increase in h11 and decrease

in h21 is true for any sequence of blow-up operations on the base, whether or not the base

is toric.

3. Bounds

The shape of the upper bound on Hodge numbers in the “shield” configuration has been

noted in previous work, but, as far as the author of this paper knows, never explained.

– 5 –

(from Taylor 1205.0952)

CY3 Fibrations are actively studied

(LA,Gao,Gray,Lee), (Taylor-Huang)

Observation 1: Almost all known CY

3-folds are fibered.

Observation 2: generic manifolds do

not admit just one elliptic fibration,

they admit many (∼ 10s or 100s).

Each of these distinct fibrations can

induce topological vanishings! Overall

Conclusion: Heterotic couplings

generically highly constrained

(beyond any one basis).
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Results and Future Work

Progress is being made in characterizing generic features of heterotic CY

vacua – E.g. when/why topological vanishings arise in heterotic couplings.

Can phrase (all) such constraints (Koszul/fibrations/etc) in a common

language (using homological algebra). Constraints ubiquitous.

Open questions:

Higher order and non-perturbative contributions?

Dual theories? Hidden Symmetries? Link to Swampland conjectures?

Control of the metric is necessary to specify the 4D theory in

compactifciation ⇒ ML techniques can provide a powerful new tool.

In particular, we have provided the first numeric approx. to SU(3)

structure metrics.

Open questions: What next? ⇒ Combining model building with moduli

stabilization.
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