Enhanced gauge symmetry and suppressed cosmological constant in non-supersymmetric heterotic string

the series of work done with Sota Nakajima and (more recently) with S. N. and Yuichi Koga

- arXiv: 1905.10745, PTEP INkjm1 \longleftarrow
- arXiv: 2003.1121, NPB INkjm 2
- arXiv: 2101.10619, PLB INkjm 3
- arXiv: 2106.10629, IKN1
- arXiv: 2110.09762, IKN2
not for today
SN talk at EAJS
I) Introduction
- punch line:
- just one-loop string p.t.
- put a full set of Wilson lines (WL)
in the heterotic interpolating models currently called
- address the issue above

- Interpolating models:

- Q: Can we interrelate the unification of forces and the prob. of cosmological const in string p.t. theory?
- no SUSY in multi TeV scale according to the LHC experiment
- even in 10D, under modular inv., \#(theories with SUSY) < \#(theories without SUSY)

```
- Type IIB
- Type IIA
- Typel
- Heterotic SO(32)
- Heterotic E8}\times\mp@subsup{E}{8}{
    call M
```

- Type OB
- Type OA
- Heterotic SO(32)
- Heterotic $S O(16) \times E_{8}$
- Heterotic $S O(16) \times S O(16)$
- Heterotic $E_{7}^{2} \times S U(2)^{2}$
- Heterotic $S O(24) \times S O(8)$

```
call \(\mathrm{M}_{2} \quad\) today
```

- possible A: interpolation by a radius ($a=\sqrt{\alpha^{\prime}} / R$) or in general radii of M_{1} and M_{2} upon compactification
'86: HI-Taylor
- choices:

$$
\begin{aligned}
& \mathrm{M}_{2}=\mathrm{SO}(16) \times \mathrm{SO}(16) \text { tachyon free } \quad \text { ' } 86 \mathrm{I}-\mathrm{T} \text { \& INkjm 1, } 2 \\
& \text { Dixon-Harvey 1986, Alvarez-Gaume et al. 1986, } \\
& \text { or } \\
& \text { Faraggi-Tsulaia '09, } \ldots
\end{aligned}
$$

= tachyonic ones should be allowed in SUSY restoring region cf. Faraggi '19, Faraggi, Matyas, Percival '19

- warning: consider all marginal deformations of the world sheet action \Rightarrow • full set of Wilson lines should be turned on

Narain-Sarmadi-Witten

- generically spoil the nonabelian gauge group extrema \leftrightarrow points of sym. enhancement \& the stable 9D perturbative vacuum can be determined

- formula for one-loop cosm. const in SUSY res. region:

$$
\begin{aligned}
\Lambda^{(D)}=\xi\left(n_{F}-n_{B}\right) a^{D}+O\left(e^{-1 / a}\right) \quad \text { H.l.-Taylor('86) } \\
\mathrm{M}_{1} 0 \longleftrightarrow \infty \mathrm{M}_{2} \quad \text { cf Abel-Dienes-Mavroudi }
\end{aligned}
$$

$\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{F}}$; \# of massless bosons \& fermions in D dim.

- $\mathrm{n}_{\mathrm{B}}=\mathrm{n}_{\mathrm{F}}$ models (by now more than several existing) enjoy exponential suppression of $\Lambda^{(D)}$
e.g. Kounnas-Partouche, Abel-Stewart ...
- In this setup, mass splitting due to broken SUSY is $\alpha^{\prime} M_{s}^{2}=a^{2}$.

$$
\text { e.g. } \quad a \approx 0.01 \quad \text { interesting possibility }
$$

The rest of the contents:
II) a few basics \& construction at d=1

IIII) interpolating model with WL INkjm1,2
IV) conclusion intermediate
V) simplest d-dim generalizations INkjm3
VI) EFT description

adopt the lightcone coordinates
Right mover: 10d superstring $\bar{X}_{R}^{i}(\tau-\sigma), \bar{\psi}^{i}(\tau-\sigma)$
Left mover: 26d bosonic string out of which internal 16d realize rank 16 current algebra

$$
X_{L}^{i}(\tau+\sigma), X_{L}^{I}(\tau+\sigma) \text { (or fermions) }
$$

- State counting \& characters
- $\operatorname{Tr} q^{L_{0}} \bar{q}^{\bar{L}_{0}}$ counts \#(states) at level m as coeff. in $q(\bar{q})$ expansion
- It takes the form of $\sum_{i, j} \bar{\chi}_{i}^{\mathrm{Vir}}(\bar{q}) X_{i j} \chi_{j}^{\mathrm{Vir}}(q)$ and involves spacetime \& internal $\mathrm{SO}(2 \mathrm{n}), \mathrm{n}=4,8$ characters $\operatorname{ch}(\mathrm{rep})=O_{2 n}, V_{2 n}, S_{2 n}, C_{2 n}$ expressible in terms of the four theta constants and the Dedekind eta fn

$$
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

- $\mathrm{SO}(32)$ hetero $Z_{B}^{(8)}\left(\bar{V}_{8}-\bar{S}_{8}\right)\left(O_{16} O_{16}+V_{16} V_{16}+S_{16} S_{16}+C_{16} C_{16}\right)$
$E_{8} \times E_{8}$ hetero

$$
Z_{B}^{(8)}\left(\bar{V}_{8}-\bar{S}_{8}\right)\left(O_{16}+S_{16}\right)\left(O_{16}+S_{16}\right)
$$

- Boost and enhanced gauge symmetry
- Simplest example: bosonic strings on S^{1}
Mass formula: $M^{2}=4(N-1)+2 p_{L}^{2}=4(\tilde{N}-1)+2 p_{R}^{2}$
(※) $\binom{p_{L}}{p_{R}}=\frac{1}{\sqrt{2}}\binom{n a+w / a}{n a-w / a} \xrightarrow[\left(\begin{array}{cc}\cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta\end{array}\right)]{\text { boost }}\binom{p_{L}^{\prime}}{p_{R}^{\prime}}=\frac{1}{\sqrt{2}}\binom{n+w}{n-w}$

(※) forms SO(1,1) Lorentzian lattice
- Narain moduli space of d-dim toroidal compactification
- the comp. $\Rightarrow(16+d, d)$ even self-dual Lorentzian lattice
- The space of marginal deformations (the moduli space) is the coset

$$
(※) \quad \frac{S O(16+d, d)}{S O(16+d) \times S O(d)}
$$

these boosts are generated by the constant background fields whose worldsheet action is $A_{I i} \int d^{2} z \partial X_{L}^{I} \bar{\partial} X_{R}^{i}+C_{j i} \int d^{2} z \partial X_{L}^{j} \bar{\partial} X_{R}^{i}, \quad(I=1, \cdots, 16, i, j=10-d, \cdots, 9)$

Narain, Sarmadi, Witten, (1986)
$(※)$ the case $d=1$ is our first concern

- Idea of compactification on a twisted circle
- choose \mathcal{T} : the translation by a half period $\mathcal{T}: X^{9} \rightarrow X^{9}+\pi R$
- choose Q : the Z_{2} action on the "internal" part that defines the model M_{2}
- Actually $Q=Q_{L} \bar{Q}_{R}$ and $\bar{Q}_{R}=(-)^{F}$, namely the sign flip by the spacetime fermion number
- adopt $\mathcal{T} Q$ as our Z_{2} action (no fixed point) and project onto $\mathcal{T} Q=1$ e.v., namely $\frac{1+\mathcal{T} Q}{2}$
- restore modular inv. by adding the twisted sectors
- need to prepare $\Lambda_{\alpha, \beta} \equiv(\eta \bar{\eta})^{-1} \sum_{n \in 2(\mathbf{Z}+\alpha), w \in \mathbf{Z}+\beta} q^{\frac{\alpha^{2}}{2} p_{L}^{2}} \bar{q}^{\frac{\alpha^{2}}{2} p_{R}^{2}}$
α and β are 0 or $1 / 2$, and $\alpha=0(1 / 2)$ and $\beta=0(1 / 2)$
- Construction
start over
- $Z_{+}^{(9)+}=\left(\Lambda_{0,0}+\Lambda_{1 / 2,0}\right) Z_{B}^{(7)} Z_{+}^{+}$,
- $\mathcal{T} Q: Z_{+}^{(9)+} \rightarrow Z_{-}^{(9)+}=\left(\Lambda_{0,0}-\Lambda_{1 / 2,0}\right) Z_{B}^{(7)} Z_{-}^{+}$,
Z_{-}^{+}is the Q-action of Z_{+}^{+}.
- $S: Z_{-}^{(9)+} \rightarrow Z_{+}^{(9)-}=\left(\Lambda_{0,1 / 2}+\Lambda_{1 / 2,1 / 2}\right) Z_{B}^{(7)} Z_{+}^{-}$,
$Z_{-}^{+}(-1 / \tau) \equiv Z_{+}^{-}(\tau)$.
- $\mathcal{T} Q: Z_{+}^{(9)-} \rightarrow Z_{-}^{(9)-}=\left(\Lambda_{0,1 / 2}-\Lambda_{1 / 2,1 / 2}\right) Z_{B}^{(7)} Z_{-}^{-}$,
Z_{-}^{-}is the Q-action of $Z_{+}^{-} . \quad \therefore Z_{\text {int }}^{(9)}=\frac{1}{2}\left(Z_{+}^{(9)+}+Z_{-}^{(9)+}+Z_{+}^{(9)-}+Z_{-}^{(9)-}\right)$

$$
\begin{aligned}
= & \frac{1}{2} Z_{B}^{(7)}\left\{\Lambda_{0,0}\left(Z_{+}^{+}+Z_{-}^{+}\right)+\Lambda_{1 / 2,0}\left(Z_{+}^{+}-Z_{-}^{+}\right)\right. \\
& \left.+\Lambda_{0,1 / 2}\left(Z_{+}^{-}+Z_{-}^{-}\right)+\Lambda_{1 / 2,1 / 2}\left(Z_{+}^{-}-Z_{-}^{-}\right)\right\} .
\end{aligned}
$$

In $a \rightarrow \infty$ limit, $Z_{\text {int }}^{(9)}$ produces model M_{2} :

$$
Z_{M_{2}}=Z_{B}^{(8)}\left(Z_{+}^{+}+Z_{-}^{+}+Z_{+}^{-}+Z_{-}^{-}\right) .
$$

$S O(16) \times S O(16) \leftrightarrow \operatorname{SUSY} S O(32)$

- The partition function
$\left.Z_{\text {int }}^{(9)}=Z_{B}^{(7)}\left\{\Lambda_{0,0} \overline{\bar{V}}_{8}\left(O_{16} O_{16}\right)+S_{16} S_{16}\right)-\bar{S}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)\right]$ $+\Lambda_{1 / 2,0}\left[\bar{V}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)-\bar{S}_{8}\left(\phi_{16} O_{16}+S_{16} S_{16}\right)\right]$ $+\Lambda_{0.1 / 2}\left[\bar{O}_{8}\left(V_{16} C_{16}+C_{16} V_{16}\right)-\bar{C}_{8}\left(O_{16} S_{16}+S_{16} O_{16}\right)\right]$

$$
\begin{gathered}
\left.+\Lambda_{1 / 2,1 / 2}\left[\bar{O}_{8}\left(O_{16} S_{16}+S_{16} O_{16}\right)-\bar{C}_{8}\left(V_{16} C_{10}+C_{16} V_{16}\right)\right]\right\} \\
\quad l_{L}^{l}=m^{I} \text { is the }
\end{gathered}
$$

Massless vectors with $\left[\begin{array}{l}l_{L}^{I}=m^{I} \text { is the } \\ \text { momentum for } X_{L}^{I} .\end{array}\right) \quad$ Massless spinors with

- $n=w=m^{I}=0 \times 16$

$$
\left\{\begin{array}{l}
n=w=0 \\
m^{I}=\left(\underline{ \pm, \pm,(0)^{6}} ;(0)^{8}\right),\left((0)^{8} ; \underline{ \pm, \pm,(0)^{6}}\right)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
n=w=0 \\
m^{I}=\left(\underline{ \pm,(0)^{7}} ; \underline{ \pm,(0)^{7}}\right)
\end{array}\right.
$$

$S O(16) \times S O(16)$ adjoint
$(16,16)$ of $S O(16) \times S O(16)$
$S O(16) \times S O(16) \leftrightarrow E_{8} \times E_{8}$ case not included for today

boosting the momentum lattice

The momenta of $X_{L, R}^{9}, X_{L}^{I}$ change as
(world-sheet action)
by A_{I} : Wilson lines

$$
\left\{\begin{array} { l }
{ l _ { L } ^ { I } = m ^ { I } , } \\
{ p _ { L } = \frac { 1 } { \sqrt { 2 } } (a n + w / a) , } \\
{ p _ { R } = \frac { 1 } { \sqrt { 2 } } (a n - w / a) , }
\end{array} \left\{\begin{array}{l}
l_{I}^{I}{ }_{L}=\frac{1}{\sqrt{2}}\left(\sqrt{2} m^{I} z \partial X_{L}^{I} \bar{\partial} X_{R}^{9} 2 A^{I} a_{0}^{-1} w\right), \\
p_{L}^{\prime}=\frac{1}{\sqrt{2}}\left(\sqrt{2} A \cdot m+a_{0} n-\left(1-|A|^{2}\right) a_{0}^{-1} w\right), \\
p_{R}^{\prime}=\frac{1}{\sqrt{2}}\left(\sqrt{2} A \cdot m+a_{0} n-\left(1+|A|^{2}\right) a_{0}^{-1} w\right), \\
\quad\left(a_{0}=\sqrt{1+|A|^{2}} a\right)
\end{array}\right.\right.
$$

In the partition function,

$$
\text { Boost } S O(17,1)
$$

$$
\begin{aligned}
& \Lambda_{\alpha, \beta}(a) X_{16} Y_{16} \\
& =(\eta \bar{\eta})^{-1} \eta^{-16} \sum_{n, w} q^{p_{L}^{2}} \bar{q}^{p_{R}^{2} / 2} \sum_{m^{I}} q^{\left|l_{L}\right|^{2} / 2} \longmapsto \begin{array}{l}
\chi_{X Y}^{(\alpha, \beta)}\left(a, A^{I}\right) \\
(\eta \bar{\eta})^{-1} \eta^{-16} \sum_{n, w, m^{I}} q^{\left(p_{L}^{\prime 2}+\left|l_{L}^{\prime}\right|^{2}\right) / 2} \bar{q}^{p_{R}^{2} / 2}
\end{array}, .
\end{aligned}
$$

$\left[X_{16}, Y_{16}=\left(O_{16}, V_{16}, S_{16}, C_{16}\right)\right) \quad$ The sum of m^{I} depends on X, Y.

Moduli space and shift symmetry

- Moduli space of 9D interpolating models is 17-dimensional: a, A^{I}
- Defining t_{1}^{I} and t_{2} as

$$
t_{1}^{I}=\frac{1}{\sqrt{2}} \frac{A^{I}}{a_{0}}=\frac{1}{\sqrt{2}} \frac{A^{I}}{\sqrt{1+|A|^{2}} a}, \quad t_{2}=\frac{1}{\sqrt{2}} \frac{1}{a_{0}}=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+|A|^{2}} a},
$$

we can find the shift symmetry:

$$
\chi_{X Y}^{(\alpha, \beta)}\left(t_{1}^{I}, t_{2}\right)=\chi_{X Y}^{(\alpha, \beta)}\left(t_{1}^{I}+2, t_{2}\right)
$$

- The fundamental region of moduli space is

$$
-1<t_{1}^{1} \leq 1, \quad 0 \leq t_{2}
$$

- Moduli t_{1}^{I}, t_{2} are the parameters of the boost on the momentum lattice.

Case of the full set of WL only

$S O(16) \times S O(16) \leftrightarrow$ SUSY SO (32)

- The partition function case only for today

$$
\begin{aligned}
Z^{(9)}\left(t_{1}^{I}, t_{2}\right)= & Z_{B}^{(7)}\left\{\overline{\bar{V}}_{8}\left(\chi_{O O}^{(0,0)}\right)+\chi_{S S}^{(0,0)}\right)-\bar{S}_{8}\left(\chi_{V V}^{(0,0)}+\chi_{C C}^{(0,0)}\right) \\
& +\bar{V}_{8}\left(\chi_{V V}^{(1 / 2,0)}+\chi_{C C}^{(1 / 2,0)}\right)-\bar{S}_{8}\left(\chi_{O O}^{(1 / 2,0)}+\chi_{S S}^{(1 / 2,0)}\right) \\
& +O_{8}\left(\chi_{V C}^{(0,1 / 2)}+\chi_{C V}^{(0,1 / 2)}\right)-\bar{C}_{8}\left(\chi_{O S}^{(0,1 / 2)}+\chi_{S O}^{(0,1 / 2)}\right) \\
& \left.+\bar{O}_{8}\left(\chi_{O S}^{(1 / 2,1 / 2)}+\chi_{S O}^{(1 / 2,1 / 2)}\right)-\bar{C}_{8}\left(\chi_{V C}^{(1 / 2,1 / 2)}+\chi_{C V}^{(1 / 2,1 / 2)}\right)\right\}
\end{aligned}
$$

Massless vectors with $n=w=m^{I}=0 \times 16$

The gauge symmetry is $U(1)^{16}$ and there are no massless fermions at generic points of moduli space.

There are special points in moduli space, where the additional massless states appear.
$>$ On the plane in moduli space satisfying

$$
t_{1}^{a_{1}}=t_{1}^{a_{2}}=\cdots=t_{1}^{a_{p}}=x, \quad 1 \leq a_{i} \leq 8,2 \leq p \leq 8
$$

The gauge symmetry is enhanced:

$$
U(1)^{p-1} \subset U(1)^{16} \longrightarrow S U(p)
$$

$>$ On the plane in moduli space satisfying

$$
\left\{\begin{array}{l}
t_{1}^{a_{1}}=t_{1}^{a_{2}}=\cdots=t_{1}^{a_{p}}=x, \quad 1 \leq a_{i} \leq 8,2 \leq p \leq 8 \\
t_{1}^{b_{1}}=t_{1}^{b_{2}}=\cdots=t_{1}^{b_{q}}=y, \quad 1 \leq b_{j} \leq 8 \text { or } 9 \leq b_{j} \leq 16,2 \leq q \leq 8
\end{array}\right.
$$

The gauge symmetry is enhanced:

$$
U(1)^{p+q-2} \subset U(1)^{16} \longrightarrow S U(p) \times S U(q)
$$

case 1

$$
\begin{cases}t_{1}^{a_{1}}=t_{1}^{a_{2}}=\cdots=t_{1}^{a_{p}}=x, & 1 \leq a_{i} \leq 8,2 \leq p \leq 8 \\ t_{1}^{b_{1}}=t_{1}^{b_{2}}=\cdots=t_{1}^{b_{q}}=y, & 1 \leq b_{j} \leq 8, \\ 2 \leq q \leq 8\end{cases}
$$

Massless vectors in $S U(p) \times S U(q)$ adj rep
$>$ There are the special lines and points in $x-y$ plane:

case 2

$$
\begin{cases}t_{1}^{a_{1}}=t_{1}^{a_{2}}=\cdots=t_{1}^{a_{p}}=x, & 1 \leq a_{i} \leq 8,2 \leq p \leq 8 \\ t_{1}^{b_{1}}=t_{1}^{b_{2}}=\cdots=t_{1}^{b_{q}}=y, & \underline{9 \leq b_{j} \leq 16,2 \leq q \leq 8}\end{cases}
$$

Massless vectors in $S U(p) \times S U(q)$ adj rep
$>$ There are the special lines and points in $x-y$ plane:

$>$ these special points of intersection are written as

$$
\begin{gathered}
t_{1}^{A}=\left((0)^{p},\left(\frac{1}{2}\right)^{q},\left(\frac{1}{4}\right)^{r},\left(-\frac{1}{4}\right)^{s}\right), t_{1}^{A^{\prime}}=\left((0)^{p^{\prime}},\left(\frac{1}{2}\right)^{q^{\prime}},\left(\frac{1}{4}\right)^{r^{\prime}},\left(-\frac{1}{4}\right)^{s^{\prime}}\right), \\
\left(p+q+r+s=p^{\prime}+q^{\prime}+r^{\prime}+s^{\prime}=8, \quad I=\left(A, A^{\prime}\right)\right)
\end{gathered}
$$

the massless spectrum is

- The gauge bosons of $S O(2 P) \times S O(2 Q) \times(S U(R) \times U(1))$;
- The spinors in $(\mathbf{2 P}, \mathbf{2 Q}, \mathbf{1}) \oplus\left(\mathbf{1}, \mathbf{1}, \frac{R(R-\mathbf{1})}{2}\right) \oplus\left(\mathbf{1}, \mathbf{1}, \frac{\overline{R(R-1)}}{2}\right)$ of $S O(2 P) \times S O(2 Q) \times S U(R)$

$$
\begin{gathered}
{\left[P=p+q^{\prime}, Q=q+p^{\prime}, \quad R=r+s+r^{\prime}+s^{\prime}\right]} \\
n_{F}=n_{B} \text { cases } \\
(P, Q)=(9,7) \text { or }(7,9) \\
(P, Q)=(6,6)
\end{gathered}
$$

The gauge symmetry is maximally enhanced at the points with $p=q^{\prime}=8$ or $q=p^{\prime}=8$, where the gauge symmetry is $S O$ (32) and there are no massless fermions.
> The cosmological constant is calculated up to exponentially suppressed terms:

$$
\begin{aligned}
& \Lambda_{M o d e l I}^{(9)}\left(t_{1}^{I}, t_{2}\right) \simeq \frac{48}{\pi^{14}}\left(\frac{a_{0}}{\sqrt{\alpha^{\prime}}}\right)^{9} 8\left\{-24+4 \sum_{A=1}^{8} \sum_{A^{\prime}=9}^{16} \cos \left(2 \pi t_{1}^{A}\right) \cos \left(2 \pi t_{1}^{A^{\prime}}\right)\right. \\
& \left.-4 \sum_{\substack{A, B=1 \\
A>B}}^{8} \cos \left(2 \pi t_{1}^{A}\right) \cos \left(2 \pi t_{1}^{B}\right)-4 \sum_{\substack{A^{\prime}, B^{\prime}=9 \\
A^{\prime}>B^{\prime}}}^{16} \cos \left(2 \pi t_{1}^{A^{\prime}}\right) \cos \left(2 \pi t_{1}^{B^{\prime}}\right)\right\}
\end{aligned}
$$

$>$ the stable points in moduli space:

$$
\frac{\partial \Lambda^{(9)}}{\partial t_{1}^{I}}=0, \quad \frac{\partial^{2} \Lambda^{(9)}}{\partial t_{1}^{I} \partial t_{1}^{J}} \geq 0 \quad \xrightarrow{\text { solve }} t_{1}^{I}=\left((0)^{8} ;\left(\frac{1}{2}\right)^{8}\right),\left(\left(\frac{1}{2}\right)^{8} ;(0)^{8}\right)
$$

stabilized when the gauge symmetry is maximally enhanced.
the $n_{F}=n_{B}$ cases are only extremal

IV)

- completed the analysis in the case of $d=1$ in susy restoring region
- a few $n_{F}=n_{B}$ models found
- the minimum is $\mathrm{SO}(32) / \mathrm{E}_{8} \times \mathrm{E}_{8}$ gauge sym., massless bosons only
- $\frac{\partial}{\partial \alpha^{\prime}} \Lambda_{\text {string }}=$ dilaton tadpole is small to this order $\&$ will be made harmless

- Simplest d dim. generalization: sketch \& results

- assumptions
- still in the susy restoring region
- only the X^{9} direction is twisted. Otherwise just d. dim toroidal comp.
- construction
- prepare the following $(16+d, d)$ momentum lattice

$$
\Lambda[\Gamma ; \alpha, \beta] \equiv(\eta \bar{\eta})^{-D} \eta^{-16} \sum_{m^{I} \in \Gamma} \sum_{w^{9} \in \boldsymbol{Z}+\alpha} \sum_{n_{9} \in 2(\boldsymbol{Z}+\beta)} \sum_{w^{i \neq 9}, n_{i \neq 9} \in \boldsymbol{Z}} q^{\frac{1}{2}\left(\left|\ell_{L}\right|^{2}+p_{L}^{2}\right)} \bar{q}^{\frac{1}{2} p_{R}^{2}}
$$

where Γ is a 16-dimensional Euclidean lattice.

- $\Gamma_{16}: 16$ dim. even self-dual lattice
- The \boldsymbol{Z}_{2} action is $(-1)^{F} Q_{L} \mathcal{T}^{(9)}$
- By using a shift vector $\delta^{I} \in \frac{1}{2} \Gamma_{16}, Q_{L}$ can be represented by $\exp (2 \pi i m \cdot \delta)$ for $m^{I} \in \Gamma_{16}$. We split Γ_{16} into

$$
\Gamma_{16}^{+}=\left\{m^{I} \in \Gamma_{16} \mid \delta \cdot m \in \boldsymbol{Z}\right\}, \quad \Gamma_{16}^{-}=\left\{m^{I} \in \Gamma_{16} \left\lvert\, \delta \cdot m \in \boldsymbol{Z}+\frac{1}{2}\right.\right\} .
$$

- output: $Z_{\text {int }}^{(10-D)}=Z_{B}^{(8-D)}\left\{\bar{V}_{8}\left(\Lambda\left[\Gamma_{16}^{+} ; 0,0\right]+\Lambda\left[\Gamma_{16}^{-} ; 0,1 / 2\right]\right)\right.$

$$
\begin{aligned}
& -\bar{S}_{8}\left(\Lambda\left[\Gamma_{16}^{+} ; 0,1 / 2\right]+\Lambda\left[\Gamma_{16}^{-} ; 0,0\right]\right) \\
& +\bar{O}_{8}\left(\Lambda\left[\Gamma_{16}^{+}+\delta ; 1 / 2,0\right]+\Lambda\left[\Gamma_{16}^{-}+\delta ; 1 / 2,1 / 2\right]\right) \\
& \left.-\bar{C}_{8}\left(\Lambda\left[\Gamma_{16}^{+}+\delta ; 1 / 2,1 / 2\right]+\Lambda\left[\Gamma_{16}^{-}+\delta ; 1 / 2,0\right]\right)\right\} .
\end{aligned}
$$

- gauge symmetry enhancement pattern is the same as before
- also in 1:1 correspondence with the corresponding toroidal comp. in M_{1} superstring.
V) Note
- $Z_{\mathrm{SO}(32) \text { susy }}=\left(\bar{V}_{8}-\bar{S}_{8}\right)\left(O_{16} O_{16}+V_{16} V_{16}+\right.$ massive only $)$

$$
\approx 0
$$

heterotic gauged 10d sugra gravity(ino) bifund.
adj.
in evaluation $\bar{V}_{8} \approx \bar{S}_{8} \equiv(\overline{V S})_{\text {eval }}$

- $Z_{\mathrm{SO}(16) \times \mathrm{SO}(16) \text { nosusy }}=\bar{V}_{8} O_{16} O_{16}-\bar{S}_{8} V_{16} V_{16}+$ massive only

$$
\approx(\overline{V S})_{\mathrm{eval}}\left(O_{16} O_{16}-V_{16} V_{16}\right)+\cdots
$$

(F) gravitino \& gaugino removed
(B) bifund vector removed

- $Z_{\text {IT }}=\Lambda_{00} \bar{V}_{8} O_{16} O_{16}-\Lambda_{00} \bar{S}_{8} V_{16} V_{16}+\Lambda_{1 / 2,0} \bar{V}_{8} V_{16} V_{16}-\Lambda_{1 / 2,0} \bar{S}_{8} O_{16} O_{16}+\cdots$ $\approx\left(\Lambda_{00}-\Lambda_{1 / 2,0}\right)(\overline{V S})_{\text {eval }}\left(O_{16} O_{16}-V_{16} V_{16}\right)+$ massive

They come back!! as 1st KK excitations

- Both $\Lambda_{\text {cosmo }}^{1 \text {-loop }} \&$ gauge sym. enhancement can be understood in QFT of SO(16) \times SO(16) heterotic gauged supergravity coupled with bifund. supermultiplet where SUSY broken by the twisted circle.

- Gauge symmetry enhancement in EFT

- can read off masses due to twisted compactification by eq. of motion
- adj. vectors: The compactified components A^{j} receive VEV's through the Wilson line operators and we write as $A^{j}=\mathcal{A}^{j}+\tilde{A}^{j}, \quad \mathcal{A}^{j}=\sum_{I=1}^{r} \mathcal{A}^{j, I} H^{I}$, where $r=\operatorname{rank}(g), \mathcal{A}^{j, I}$ are from the Wilson lines and H^{I} are the Cartan generators. In the Cartan-Weyl basis, the twisted boundary condition is

$$
\begin{aligned}
A^{M}\left(x^{\mu} ; x^{a}, x^{9}+2 \pi R^{9}\right) & =U A^{M}\left(x^{\mu} ; x^{a}, x^{9}\right) U^{\dagger} \\
= & \sum_{I=1}^{r} A^{M, I}\left(x^{\mu} ; x^{a}, x^{9}\right) H^{I}+\sum_{\alpha \in \Delta^{\prime}} e^{2 \pi i c \cdot \alpha} A^{M, \alpha}\left(x^{\mu} ; x^{a}, x^{9}\right) E^{\alpha},
\end{aligned}
$$

where $U=e^{2 \pi i c \cdot H}$ and c^{I} are the components of a dual vector such that $2 c I$ are those lying in the dual of the root lattice with the Wilson lines $t^{j, I} \equiv R^{j} \mathcal{A}^{j, I}$ (j not summed)

$$
M_{B, I, m}^{2}=\sum_{j=10-D}^{9}\left(\frac{m_{j}}{R^{j}}\right)^{2}, \quad M_{B, \alpha, m}^{2}=\sum_{a=10-D}^{8}\left(\frac{m_{a}+t^{a} \cdot \alpha}{R^{a}}\right)^{2}+\left(\frac{m_{9}+c \cdot \alpha+t^{9} \cdot \alpha}{R^{9}}\right)^{2} .
$$

- adj. fermions:

$$
\begin{aligned}
\psi\left(x^{\mu} ; x^{a}, x^{9}+2 \pi R^{9}\right) & =-U \psi\left(x^{\mu} ; x^{a}, x^{9}\right) U^{\dagger} \\
& =-\left(\sum_{I=1}^{r} \psi^{I}\left(x^{\mu} ; x^{a}, x^{9}\right) H^{I}+\sum_{\alpha \in \Delta^{\prime}} e^{2 \pi i c \cdot \alpha} \psi^{\alpha}\left(x^{\mu} ; x^{a}, x^{9}\right) E^{\alpha}\right)
\end{aligned}
$$

$M_{F, I, m}^{2}=\sum_{a=10-D}^{8}\left(\frac{m_{a}}{R^{a}}\right)^{2}+\left(\frac{m_{9}+1 / 2}{R^{9}}\right)^{2}, \quad M_{F, \alpha, m}^{2}=\sum_{a=10-D}^{8}\left(\frac{m_{a}+t^{a} \cdot \alpha}{R^{a}}\right)^{2}+\left(\frac{m_{9}+1 / 2+c \cdot \alpha+t^{9} \cdot \alpha}{R^{9}}\right)^{2}$.
rederived our results from these

Summary

II) a few basics \& construction at d=1
III) interpolating model with WL
IV) conclusion intermediate
V) simplest d-dim generalizations
VI) EFT description

- interesting interplay revealed with WL already at free spectrum
- need to examine interactions perturbative or nonperturbative to search for vacua which can inhabit us.

