Heterotic/F theory dual SU(5) model

H. Clemens \& Stuart Raby
arXiv:1906.07238 [hep-th]
arXiv:1908.01110 [hep-th]
arXiv:1908.01913 [hep-th]
arXiv:1912.06902 [hep-th]
arXiv:2001.10047 [hep-th]

KEK Theory Workshop
December 9, 2021

Outline

Heterotic - F theory duality

- SU(5) GUT w/Wilson line breaking
- $4+1$ split $\quad\left(\mathrm{SU}(4) \mathrm{xU}(1)_{\mathrm{x}}\right)_{\text {Higgs }}$
- Vector-like exotics / bisection
- GUT breaking \& Gauge coupling unification
- R parity / Z_{4}^{R} symmetry
- Conclusions

Conclusions

- Constructed Global SU(5) F theory model with Wilson line breaking
- 3 SO(10) families and one pair of Higgs doublets + NO vector-like exotics!
- $\mathrm{U}(1)_{\mathrm{X}}$ and $\square{ }_{4}^{R}$ symmetry
- $10_{M} 10_{M} 5_{H}, 10_{M} \overline{5_{M}} \overline{5_{H}}, \Gamma_{M} \overline{5_{M}} 5_{H}, \Gamma_{M} \Gamma_{M} \Lambda$
- Complete twin sector
- Different scales !

Heterotic - F theory duality

Heterotic side

- E8 x E8 on elliptically fibered CY3
- Torus fibered over base B_{2}
- E8 broken to $\mathrm{SU}(5)_{\text {gauge }}$ by $\mathrm{SU}(5)_{\text {Higgs }}$ vector bundle
- Freely acting Z_{2} involution (preserving the gauge symmetry) $\pi_{1}(\mathrm{CY} 3)=\mathrm{Z}_{2} \quad \frac{d x}{y} \rightarrow \frac{d x}{y}$
- Wilson line wraps non-contractible cycle, breaks SU(5) gauge to SM
- Higgs data in semi-stable degeneration
limit $\mathrm{dP}_{9} \mathrm{U} \mathrm{dP}_{9}$ connected along elliptic fiber
- Defines the spectral cover

F theory

Heterotic theory

$$
\times B_{2}
$$

CY4

$$
V_{3}=C Y 3
$$

Singular elliptic fibration

Gauge degrees of freedom on 7-branes realized in terms of ADE singularities,
in codim 1 in the base B_{3} : divisor S_{GUT}

Geometrically: elliptically fibered CY4 with Weierstrass form

$$
y^{2}=x^{3}+f x+g
$$

f and g are global sections of $O\left(-4 K_{B}\right)$ and $O\left(-6 K_{B}\right)$, resp.

Singular Elliptic Fibration

Gauge degrees of freedom:
discriminant locus

$$
\Delta=4 f^{3}+27 g^{2}=0 \quad \supset \quad S_{\mathrm{GUT}}
$$

Kodaira classification ADE

SU(5) extended Dynkin diagram

F theory side

- Elliptically fibered CY4 over base B_{3}
- $B_{3}=P^{1}$ fibered over same base B_{2} $\mathrm{dP}^{9} \mathrm{~s}$ determine the Weierstrass function/Tate form

$$
\begin{aligned}
& y^{2}=x^{3}+a_{5} x y+a_{4} z x^{2}+a_{3} z^{2} y+a_{2} z^{3} x+a_{0} z^{5} \\
& a_{i}, z, t=y / x \in H^{0}\left(K_{B_{3}}^{-1}\right)^{[-1]}
\end{aligned}
$$

Z_{2} involution (freely acting on $S_{\text {GUT }}^{\wedge}=K \beta$ defines $S_{G U T}^{\vee}=$ Enriques surface with $\pi_{1}\left(S_{G U T}^{\vee}\right)=Z_{2}$

Preserving $\mathrm{CY} 4 \Rightarrow \frac{d x}{y} \rightarrow-\frac{d x}{y}$

Wilson line breaking : New Problems

(1) y-> -y breaks gauge symmetry
(2) vector-like exotics

Follow the roots

$$
y^{2}=x^{3}+a_{5} x y+a_{4} z x^{2}+a_{3} z^{2} y+a_{2} z^{3} x+a_{0} z^{5}
$$

Divide by a_{0}^{6} and $\frac{y}{a_{0}^{3}} \rightarrow y, \frac{x}{a_{0}^{2}} \rightarrow x, \frac{z}{a_{0}} \rightarrow z, \frac{a_{j}}{a_{0}} \rightarrow c_{j}$

$$
y^{2}=x^{3}+c_{5} x y+c_{4} z x^{2}+c_{3} z^{2} y+c_{2} z^{3} x+z^{5}
$$

Equivariant crepant resolution => sausages
Under involution 'breaks the gauge group'

$$
\begin{array}{ll}
y \rightarrow-y & c_{j}=0 \quad h_{E_{8}} \rightarrow-h_{E_{8}} \quad \text { i.e. roots } \rightarrow-\text { roots } \\
y \rightarrow-y & c_{j} \rightarrow(-1)^{j} c_{j} \quad h_{S U(5)} \rightarrow-h_{S U(5)}
\end{array}
$$

Follow the roots

Narasimhan-SeshadriTheorem:
A holomorphic vector bundle of degree zero on a Riemann surface is stable IFF it comes from an irreducible unitary representation of the fundamental group of the surface.

Freedman, Morgan \& Witten use this to define $d P_{9}$ in terms of the data of the non-flat $S U(5)_{\text {Higgs }}$ bundle on the Heterotic side.

But this requires the complex gauge group with a choice of $\pm i!!$

Summary: Z_{2} involution on elliptic curve $: y \rightarrow-y$
Problem 1 - involution breaks GUT
Involution takes GUT roots $\rho^{c} \rightarrow-\rho^{c}$

Note: roots are defined in terms of the pure imaginary part of the complexified group

$$
\begin{aligned}
& \rho^{c}=i \rho \rightarrow-\rho^{c} \\
& \text { where } \rho \text { are physicist's roots }
\end{aligned}
$$

Solution to problem 1

Add to involution action by conjugation

$$
\rho^{c}=i \rho \rightarrow-\left(\rho^{c}\right)^{*}=i \rho
$$

Hence i ρ and thus ρ are unchanged !!!
arXiv:1906.07238 [hep-th]

Problem 2

Representation	Type of multiplet	Cohomology group dimension
$(8,1)_{0}$	Vector	$h^{2}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {CUT }}^{\prime}}^{\prime}\right)=1$
$(1,3)_{0}$	Vector	$h^{2}\left(S_{\text {GUT }}^{\text {V }}, K_{S_{\text {GUT }}}\right)=1$
$(1,1){ }_{0}$	Vector	$h^{2}\left(S_{\text {GUT }}^{\mathrm{V}}, K_{S_{\text {CuT }}^{\text {Cut }}}\right)=1$
$(8,1)_{0}$	Chiral	$h^{0}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {SUT }}}\right) \oplus h^{1}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {CUT }}}^{\wedge}\right)=0$
$(1,3)_{0}$	Chiral	$h^{0}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {GUT }}^{\vee}}\right) \oplus h^{1}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {CUT }}^{\prime}}^{\vee}\right)=0$
$(1,1){ }_{0}$	Chiral	$h^{0}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {CUT }}}^{\vee}\right) \oplus h^{1}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {CUT }}^{V}}^{\prime}\right)=0$
$(3,2)_{-5 / 6}$	Vector	$h^{0}\left(S_{\text {GUT }}^{\text {v/ }}, \mathcal{O}_{S_{\text {CUT }}^{\vee}}^{\prime}\left(\varepsilon_{u, v}\right)\right)=0$
$(3,2)_{5 / 6}$	Vector	$h^{0}\left(S_{\text {GUT }}^{v}, \mathcal{O}_{S_{\text {GUT }}^{\text {c }}}\left(\varepsilon_{u, v}\right)\right)=0$
$(3,2)_{-5 / 6}$	Chiral	$h^{1}\left(S_{\mathrm{GUT}}^{\vee}, \mathcal{O}_{S_{\mathrm{GUT}}^{\vee}}\left(\varepsilon_{u, v}\right)\right) \oplus h^{2}\left(S_{\mathrm{GUT}}^{\vee}, \mathcal{O}_{S_{\mathrm{GUT}}^{\vee}}\left(\varepsilon_{u, v}\right)\right)=1$
$\left.{ }_{(3,2}\right)_{5 / 6}$ R	Chiral	$h^{1}\left(S_{\mathrm{GUT}}^{\vee}, \mathcal{O}_{S_{\mathrm{GUT}}^{\vee}}^{\vee}\left(\varepsilon_{u, v}\right)\right) \oplus h^{2}\left(S_{\mathrm{GUT}}^{\vee}, \mathcal{O}_{S_{\mathrm{GUT}}^{\vee}}^{\vee}\left(\varepsilon_{u, v}\right)\right)=1$

Vector-like exotics
Beasley, Heckman \& Vafa arXiv;0806.0102 section 7
Marsano, Clemens, Pantev, Raby \& Tseng arXiv: 1206.6132
Theorem says always occurs on elliptic fiber w/section

Solution to problem 2

Build $\mathrm{CY}_{4}=$ elliptic fiber over base B_{3} $B_{3}=\mathrm{P}^{1}$ with 2 sections \downarrow B_{2}

Given by Tate form of Weierstrass function
$\omega y^{2}=x^{3}+a_{5} \omega x y+a_{4} z \omega x^{2}+a_{3} z^{2} \omega^{2} y+a_{2} z^{3} \omega^{2} x+a_{0} z^{5} \omega^{3}$

$$
\varsigma\left(b_{3}\right)=\{[\omega, x, y]=[0,0,1]\} \text { first section }
$$

Tate form

$\omega, y, x=$ elliptic fiber (torus)
$z=0 \Rightarrow S_{G U T} \Rightarrow$ descriminant vanishes
z, a_{j} functions on B_{3}
Choose $a_{5}+a_{4}+a_{3}+a_{2}+a_{0}=0$
$\tau\left(b_{3}\right)=\left\{[\omega, x, y]=\left[1, z^{2}, z^{3}\right]\right\}$ second section
Let $\omega=1, y=t^{3}, x=t^{2}, s=t / z$

$$
\begin{aligned}
C & \equiv a_{5} s^{5}+a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{0}-\text { spectral cover } \\
& =\left(a_{5} s^{4}+a_{54} s^{3}-a_{20} s^{2}-a_{0}(s+1)\right)(s-1) 4+1 \text { split }
\end{aligned}
$$

Now our elliptic fibration has two sections which are invariant under the initial Z_{2} involution In the final def. of the Involution we include a translation by $\xi\left(b_{3}\right)-\tau\left(b_{3}\right)$ No Vector-like exotics !! arXiv:1908.01913 [hep-th]

Representation	Type of multiplet	Cohomology group dimension
$(8,1){ }_{0}$	Vector	$h^{2}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {CUT }}}^{\prime}\right)=h^{0}\left(\mathcal{O}_{S_{\text {GUT }}}\right)=1$
$(1,3)_{0}$	Vector	
$(1,1){ }_{0}$	Vector	
$(8,1)_{0}$	Chiral	$h^{0}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\mathrm{GUT}}^{\vee}}\right) \oplus h^{1}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\text {SUT }}^{\vee}}\right)=0$
$(1,3)_{0}$	Chiral	$h^{0}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\mathrm{GUT}}^{\vee}}^{\wedge}\right) \oplus h^{1}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\text {CUT }}^{\vee}}\right)=0$
$(1,1){ }_{0}$	Chiral	$h^{0}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\text {GUT }}^{\vee}}^{\sim}\right) \oplus h^{1}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\text {CuT }}^{\vee}}\right)=0$
$(3,2)_{-5 / 6}$	Vector	$h^{0}\left(\mathcal{O}_{\left.S_{\text {GuT }} \times{ }_{B_{3}^{\vee} W_{4}^{\vee}}\left(\varepsilon_{u, v} \cdot \tilde{\tau}-\varepsilon_{u, v} \cdot \tilde{\zeta}\right)\right)=0}\right.$
$(\overline{\mathbf{3}, 2})_{5 / 6}$	Vector	$h^{0}\left(\mathcal{O}_{S_{\text {GUT }}^{\text {c/ }} \times{ }_{B_{2}^{\nu} W_{4}^{\vee}}}\left(\varepsilon_{u, v} \cdot \tilde{\tau}-\varepsilon_{u, v} \cdot \tilde{\zeta}\right)\right)=0$
$(\mathbf{3 , 2})_{-5 / 6}$	Chiral	$h^{1}\left(\mathcal{O}_{\left.S_{\text {GUT }}{ }^{\text {a }}{ }_{B_{3}^{\vee} W_{4}^{\vee}}\left(\varepsilon_{u, v} \cdot \sim_{\tau}-\varepsilon_{u, v} \cdot \dot{\zeta}\right)\right) \oplus h^{2}(\ldots)=0}\right.$
$(\overline{\mathbf{3}, 2})_{5 / 6}$	Chiral	

$4+1$ split of the spectral divisor (SU(4)xU(1) $)_{\text {Higgs }}$ breaking

E_{8}-> $\mathrm{SU}(5) \times \mathrm{U}(1)_{\mathrm{x}}$ on GUT surface

Orbifold has fixed points on B_{3} But freely acting on $\mathrm{S}_{\text {GUT }}$

Defining the involution on B_{3} Building B_{3} from $\mathrm{SU}(5)$ roots Solving problem 1

arXiv:1908.01110 [hep-th]
Z_{2} involution with $\mathrm{y} \rightarrow-\mathrm{y}$

$$
\Rightarrow \quad \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \rightarrow-\alpha_{4},-\alpha_{3},-\alpha_{2},-\alpha_{1}
$$

Given by $\alpha_{i}=e_{i}-e_{i-1}$ and $\left(e_{0} e_{4}\right)\left(e_{1} e_{3}\right)$

$$
\begin{aligned}
& \alpha_{1}=e_{1}-e_{0} \leftrightarrow e_{3}-e_{4}=-\alpha_{4} \\
& \alpha_{2}=e_{2}-e_{1} \leftrightarrow e_{2}-e_{3}=-\alpha_{3}
\end{aligned}
$$

Longest element of Weyl group !
$S_{4}=\operatorname{Perm}\left\{ \pm e_{0}, \pm e_{1}, \pm e_{3}, \pm e_{4}\right\}$ symmetries of cube with vertices $(\pm 1, \pm 1, \pm 1)$ and $\mathrm{e}_{2}=(0,0,0)$ Identify roots of $S U(5) \quad e_{j}-e_{2} \rightarrow e_{j}$
$\left\{e_{0}, e_{1}, e_{3}, e_{4}\right\} \rightarrow$ vertices of blue tetrahedron

$$
\begin{aligned}
& e_{0}=(1,-1,1) \\
& e_{1}=(1,1,-1) \\
& e_{3}=(-1,-1,-1) \\
& e_{4}=(-1,1,1)
\end{aligned}
$$

$\left\{-e_{0},-e_{1},-e_{3},-e_{4}\right\} \rightarrow$ vertices of red tetrahedron

Define new coordinates (x, y, z, w)
$e_{0}-e_{2}=\log (x), e_{1}-e_{2}=\log (y), e_{3}-e_{2}=\log (\omega), e_{4}-e_{2}=\log (z)$
Then $\quad \alpha_{1}=\log (y / x), \alpha_{2}=\log (1 / y), \alpha_{3}=\log (\omega), \alpha_{4}=\log (z / \omega)$
Passing from roots to their negative (Cremona trans.)

$$
\mathrm{x} \rightarrow 1 / x, y \rightarrow 1 / y, z \rightarrow 1 / z, \omega \rightarrow 1 / \omega
$$

interchanges red \leftrightarrow blue tetrahedron
We include red \leftrightarrow blue in def. of involution
Now longest element of Weyl group given by

$$
\begin{aligned}
& y / x \rightarrow \omega / z, 1 / y \rightarrow 1 / \omega, \omega \rightarrow y, z / \omega \rightarrow x / y \\
& \Rightarrow \quad \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \rightarrow-\alpha_{4},-\alpha_{3},-\alpha_{2},-\alpha_{1}
\end{aligned}
$$

Cube as Toric Polyhedral Fan

Toric representation of the graph of the completion of the Cremona involution on $P^{3}=P(x, y, z, w) \cup P(x, y, z, w)$

The green octohedron (toric quotient of the polyhedron) with vertices at the 6 red-blue-green crossing points

is the toric representation of

$$
\begin{gathered}
P_{u, v}:=P_{\left[u_{0}, v_{0}\right]} \times P_{\left[u_{1}, v_{1}\right]} \times P_{\left[u_{2}, v_{2}\right]} \\
{\left[u_{0}, v_{0}\right]=\left[\frac{x z}{y \omega}, \frac{y \omega}{x z}\right],\left[u_{1}, v_{1}\right]=\left[\frac{x y}{z \omega}, \frac{z \omega}{x y}\right],\left[u_{2}, v_{2}\right]=\left[\frac{x \omega}{y z}, \frac{y z}{x \omega}\right]}
\end{gathered}
$$

Longest element of Weyl group $-\left(\left(e_{0} e_{4}\right)\left(e_{1} e_{3}\right)\right)$

$$
\begin{array}{ccc}
P_{B_{2}} \equiv P_{\left[u_{1}, v_{1}\right]} \times P_{\left[u_{2}, v_{2}\right]} & \rightarrow & P_{B_{2}} \equiv P_{\left[u_{1}, v_{1}\right]} \times P_{\left[u_{2}, v_{2}\right]} \\
\left(\left[u_{1}, v_{1}\right],\left[u_{2}, v_{2}\right]\right) & \rightarrow & \left(\left[v_{1}, u_{1}\right],\left[v_{2}, u_{2}\right]\right)
\end{array}
$$

Involution on B_{3} (i.e. Cremoma transformation)
$C_{u, v}:=\left[u_{j}, v_{j}\right] \rightarrow\left[v_{j}, u_{j}\right]$ for $j=0,1,2$
cyclic permutations on $B_{2}\left(\left\{ \pm e_{0}\right\}\left\{ \pm e_{1}\right\}\left\{ \pm e_{4}\right\}\left\{ \pm e_{3}\right\}\right) \equiv \square_{4}$
$T_{u, v}:=\left(\left[u_{1}, v_{1}\right],\left[u_{2}, v_{2}\right]\right) \quad \rightarrow \quad\left(\left[u_{2}, v_{2}\right],\left[v_{1}, u_{1}\right]\right)$
Need to blow up at 6 points, preserving an approximate 4 symmetry on $P_{B_{2}}$ in order to obtain the correct MSSM spectrum AND a \square_{4}^{R} symmetry in the semi-stable degeneration limit, i.e. the heterotic limit! ${ }^{25}$

Blow up $P_{B_{2}}=P_{\left[u_{1}, v_{1}\right]} \times P_{\left[u_{2}, v_{2}\right]}$ torically at 2 pts. Same as $P^{2} \equiv P_{[a, b, c]}, a, b, c=f\left(\left[u_{1}, v_{1}\right],\left[u_{2}, v_{2}\right]\right)$ blown up at 3 pts, i.e. $d P^{3}$

Now blow up 4 more points to obtain $d P^{7}$, so that the anti-canonical bundle of $B_{3}=P\left[u_{0}, v_{0}\right] \times d P^{7}$ has 9 sections. The 4 pts have approximate Z_{4} symmetry which is exact in the heterotic limit.
dP7 following -
Blumenhagen, Braun, Grimm \& Weigand arXiv:0811.2936

Matter Curves

$$
\begin{array}{r}
z=a_{5}=0 \\
z=a_{420}=0
\end{array}
$$

$z=\left(\right.$ quadratic in $\left.a_{j}\right)=0$

$$
\begin{aligned}
& h^{0}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0)}\right|_{\Sigma_{10}^{(4)}}\right)-h^{1}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0)}\right|_{\Sigma_{10}^{(4)}}\right)=7-1=6 \\
& h^{0}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0)}\right|_{\Sigma_{5}^{(41)}}\right)-h^{1}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0)}\right|_{\Sigma_{5}^{(41)}}\right)=7-1=6 \\
& h^{0}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0,-)}\right|_{\Sigma_{5}^{(44)}}\right)-h^{1}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0,-)}\right|_{\Sigma_{5}^{(44)}}\right)=0 .
\end{aligned}
$$

Involution -

$y \rightarrow-y$, conjugation of roots,
translation by $\xi\left(\mathrm{b}_{3}\right)-\tau\left(b_{3}\right)$, Wilson line $\sim \mathrm{Y}$
Downstairs (after the involution) keep only symmetric subspace

$$
\Rightarrow 6 \rightarrow 3
$$

$$
F_{+} \subseteq\{z=0\} \cap F_{x z y w}, F_{-} \subseteq\{z=0\} \cap F_{y w x z}
$$

Now add $\quad L_{\text {Higgs }} \subset L_{\text {Higgs }}^{0} \otimes O_{D}\left(m \cdot S_{G U T}^{\wedge} \cap\left(F_{+} \cup F_{-}\right) \times P_{[U, V]}\right)$

$$
\Rightarrow h^{1}\left(L_{10}^{(4)}\right)=h^{1}\left(L_{5}^{41}\right)=0
$$

3 families

$\Sigma_{10}^{(4)}=\left\{a_{5}=z=0\right\}$	$C_{u, v}$	L_{Y}	$\mathcal{L}_{\text {Higgs }}$	$S U(3) \times S U(2) \times U(1)_{Y}$
$h^{0}\left(\check{\mathcal{L}}_{10}^{(4)[\pm 1]}\right)$	+1	+1	3	$(\mathbf{1}, \mathbf{1})_{+1}$
	-1	-1		$(\mathbf{3 , 2})_{+1 / 6}$
	+1	+1		$(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$
$h^{1}\left(\check{\mathcal{L}}_{10}^{(4)[\pm 1]}\right)$	+1	+1	0	$(\mathbf{1}, \mathbf{1})_{+1}$
	-1	-1		$(\overline{\mathbf{3}}, \mathbf{2})_{+1 / 6}$
	+1	+1		$(\mathbf{3}, \mathbf{1})_{+2 / 3}$
$\Sigma_{\overline{5}}^{(41)}=\left\{a_{420}=z=0\right\}$	$C_{u, v}$	L_{Y}	$\mathcal{L}_{\text {Higgs }}$	$S U(3) \times S U(2) \times U(1)_{Y}$
$h^{0}\left(\check{\mathcal{L}}_{\overline{5}}^{(41)[\pm 1]}\right)$	+1	+1	3	$(\overline{\mathbf{3}}, \mathbf{1})_{+1 / 3}$
	-1	-1		$(\mathbf{1 , 2})_{-1 / 2}$
$h^{1}\left(\check{\mathcal{L}}_{\overline{5}}^{(41)[\pm 1]}\right)$	+1	+1	0	$(\mathbf{3}, \mathbf{1})_{-1 / 3}$
	-1	-1		$(\mathbf{1 , 2})_{+1 / 2}$

1 pair of Higgs doublets

$\Sigma_{\overline{5}}^{(44)}=\left\{a_{4} a_{3}+a_{5}\left(a_{0}-a_{3}\right)=z=0\right\}$	$C_{u, v}$	L_{Y}	$\mathcal{L}_{\text {Higgs }}$	$S U(3) \times S U(2) \times U(1)_{Y}$
$h^{0}\left(\check{\mathcal{L}}_{\overline{5}}^{(44)[+1]}\right)$	+1	+1	0	$(\overline{\mathbf{3}}, \mathbf{1})_{+1 / 3}$
$h^{0}\left(\check{\mathcal{L}}_{\overline{5}}^{(44)[-1]}\right)$	-1	-1	1	$(\mathbf{1}, \mathbf{2})_{-1 / 2}$
$h^{1}\left(\check{\mathcal{L}}_{\overline{5}}^{(44)[+1]}\right)$	+1	+1	0	$(\mathbf{3}, \mathbf{1})_{-1 / 3}$
$h^{1}\left(\check{\mathcal{L}}_{\overline{5}}^{(44)[-1]}\right)$	-1	-1	1	$(\mathbf{1}, \mathbf{2})_{+1 / 2}$

$\mathrm{U}(1)_{\mathrm{x}}$ due to $4+1$ split

$\omega=1, y=t^{3}, x=t^{2}, s=t / z$
$C=\left(a_{5} s^{4}+a_{54} s^{3}-a_{20} s^{2}-a_{0}(s+1)\right)(s-1) 4+1$ split
Intersection of 3 matter curves = cubic coupling

$$
10_{m}^{-1}, \overline{5}_{m}^{+3}, 5^{+2}{ }_{n}+\overline{5}^{-2}{ }_{h}
$$

$10_{m} \overline{5}_{m} \overline{5}_{h}, 10_{m} 10_{m} 5_{h}$ but NOT $10_{m} \overline{5}_{m} \overline{5}_{m}$

Right-handed Neutrinos arXiv:2001.10047 [hep-th]

$$
\Gamma^{-5} \equiv 1^{-5}, \quad \Lambda^{+10}
$$

$\Gamma^{-5}{ }_{m} 5^{+3}{ }_{m} 5_{h}^{+2}$ Dirac neutrino mass allowed $\Gamma^{-5}{ }_{m} \Gamma^{-5}{ }_{m} \Lambda^{+10}$ also allowed

$U(1)_{X} \rightarrow Z_{2}$ matter parity by involution

Defining equations for fermionic states (then SUSY gives bosons)
$10, \overline{5}: \quad a_{j}, z=0$
$(5, \overline{5})_{\text {Higgs }}: \quad a_{j} a_{k}, z=0$
gauginos: $\quad z=0$

TABLE 3: $T_{u, v}$	$T_{u, v}$-charge	space
matter fields on $\frac{\Sigma_{10}^{(1)}}{\left\{C_{u, v}\right\}}$	-1	$H^{0}\left(\frac{\Sigma_{10}^{(4)}}{\left\{C_{u, v\rangle}\right\}} \mathcal{L}_{\text {Higgs }}^{\vee,[\pm 1]}\right)$
matter fields on $\frac{\sum_{5}^{(41)}}{\left\{C_{u, v}\right\}}$	-1	$H^{0}\left(\frac{\Sigma_{5}^{(41)}}{\left\{C_{u, v}\right\}} ; \mathcal{L}_{\text {Higgs }}^{\vee,[\pm 1]}\right)$
Higgs fields on $\frac{\Sigma_{5}^{(44)}}{\left\{C_{u, v}\right\}}$	+i	$H^{0}\left(\frac{\Sigma_{\overline{5}}^{(44)}}{\left\{C_{u, v}\right\}} ; \mathcal{L}_{\text {Higgs }}^{\vee}\right.$ [-1] $) / H^{1}\left(\frac{\Sigma_{\overline{5}}^{(44)}}{\left\{C_{u, v}\right\}} ; \mathcal{L}_{\text {Higgs }}^{\vee,[-1]}\right)$
bulk matter on $\frac{S_{G \cup T}}{\left\{C_{u, v}\right\}}$	-i	$H^{2}\left(K_{\frac{S_{G U T}}{}{ }^{\left\{C_{u, v}\right\}}{ }^{\text {a }} \text { (}}\right.$

*Given the $Z_{4} \mathrm{R}$ charges, i^{q+1} for the fermionic components, then bosonic components have charge i^{q} with $\theta^{\prime}=i \theta$
Z_{4}^{R} - Lee, Raby, Ratz, Ross, \& Schieren arXiv:1009.0905

In fond memory of a good friend Graham Ross

Relative Scales - Visible vs. Hidden sector arXiv:2001.10047 [hep-th]

$$
S_{E H} \sim M_{*}^{8} \int_{\mathbb{R}^{3}, 1 \times B_{3}} R \sqrt{-g_{\delta}} d^{10} x
$$

$$
M_{P l}^{2} \simeq M_{*}^{8} \cdot \operatorname{Vol}\left(B_{3, \delta}\right)
$$

$$
S_{\text {guage }} \square-M_{*}^{4} \int_{R^{3}, 1 \times S_{i}}\left(\operatorname{Tr}\left(F_{1}^{2}\right) \sqrt{-g_{1}}+\operatorname{Tr}\left(F_{2}^{2}\right) \sqrt{-g_{2}}\right) \delta^{2}\left(z_{0}\right) d^{10} x
$$

$$
M_{G}(i)^{-4} \sim \operatorname{Vol}\left(S_{i}\right)
$$

$$
\begin{aligned}
& B_{3,0}=B_{3}^{(1)} \cup B_{3}^{(2)}=P_{a}^{1} \times B_{2} \cup P_{b}^{1} \times B_{2} \\
& S_{1}=\left(\{a=\infty\} \times B_{2}\right) \cup\left(P_{a}^{1} \times C\right) \\
& S_{2}=\left(\{b=\infty\} \times B_{2}\right) \cup\left(P_{b}^{1} \times C\right)
\end{aligned}
$$

$$
m_{i}=\operatorname{Vol}\left(P_{i}^{1}\right), i=a, b, \quad \operatorname{Vol}(C)=\int_{B_{2}}|q|^{2}
$$

$$
\operatorname{Vol}\left(S_{i}\right)=\operatorname{Vol}\left(B_{2}\right)+m_{i} \operatorname{Vol}(C), \quad m_{i}=\operatorname{Vol}\left(P_{i}^{1}\right), i=a, b
$$

$$
\alpha_{G}(i) M_{P l} \square \frac{\sqrt{\left(m_{1}+m_{2}\right) \operatorname{Vol}\left(B_{2}\right)}}{\operatorname{Vol}\left(B_{2}\right)\left(1+K m_{i}\right)}
$$

Visible sector $\alpha_{G}(1)^{-1}=24, M_{G}(1)=3 \times 10^{16} \mathrm{GeV}$
Eg.

$$
\alpha_{G}(2) / \alpha_{G}(1)=\frac{1+K m_{1}}{1+K m_{2}}, \quad M_{G}(2) / M_{G}(1)=\left(\frac{1+K m_{1}}{1+K m_{2}}\right)^{1 / 4}
$$

Twin sector, take $M_{G}(2)=3.9 \times 10^{16} \mathrm{GeV}, \alpha_{G}(2)^{-1}=8.7$

$$
\text { or } \frac{1+K m_{1}}{1+K m_{2}}=2.8
$$

Effective twin theory has $\mathrm{N}_{Q C D}=3, N_{F}=6$ and described by Seiberg dual $-\mathrm{i}, \mathrm{j}=1,2,3, \quad \mathrm{a}=1,2$ weak isospin

$$
W=q^{i a} T_{i, a}^{j, b} \bar{q}_{j, b}+\lambda_{i j}^{u} q^{i a} H_{u_{a}} \bar{q}_{j 1}+\lambda_{i j}^{d} q^{i a} H_{d a} \bar{q}_{j 2}
$$

Take $\quad \mathrm{T}_{i, a}^{j, 1}=\left(T_{u a}\right)_{i}^{j}, \mathrm{~T}_{i, a}^{j, 2}=\left(T_{d a}\right)_{i}^{j}$
Flat direction- $\quad\left(T_{u 1}\right)_{i}^{j}=\left(T_{d 2}\right)_{i}^{j}=T \delta_{i}^{j} \quad H_{u 1}=H_{d 2}=T, \quad$ let $T \square M_{G}(2)$

All twin quarks and charged leptons obtain mass at M_{G} and $S U(2)_{t} \rightarrow U(1)_{t E M}$

$$
\begin{aligned}
& \Lambda_{\text {tQCD }} \approx T \exp \left(-\frac{2 \pi}{9 \alpha_{G}(2)}\right) \square 9 \times 10^{13} \mathrm{GeV}, \\
& m_{3 / 2} \square \frac{\Lambda_{t Q C D}^{3}}{M_{P l}^{2}} \square 130 \mathrm{TeV}
\end{aligned}
$$

Wilson line and the GUT scale

- The Wilson line wraps the GUT surface breaking SU(5) -> SM gauge group
- $\mathrm{M}_{\mathrm{GUT}}=\mathrm{M}_{\mathrm{C}} \sim 1 / R_{\text {cycle }}$
- Non-local GUT breaking Precise Gauge Coupling Unification
- Complete twin world with scales fixed by the size of the twin manifold
- Mirror matter - Dark Matter candidate

Conclusions

- Constructed Heterotic/F theory dual SU(5) model with Wilson line breaking
- 3 SO(10) families and one pair of Higgs doublets + NO vector-like exotics !
- \square_{2} matter parity and \square_{4}^{R} symmetry
- Complete twin sector
- There are many, many more open questions

For the Future

Right-handed neutrino masses ?

Yukawa couplings
Stabilizing moduli and SUSY breaking Dark matter \& possible portal to the visible sector

Thank you

