Development of a LLRF Control System for a Synchrotron at WERC

Tetsuro Kurita¹ Fumihiko Tamura²

¹The Wakasa Wan Energy Research Center ²J-PARC Center

2021/10/27

MTCA Workshop

- ► Introduction
 - Accelerator Facility at WERC
 - Current LLRF Control System for a Synchrotron
- New LLRF Control System
- ▶ Off-beam Commissioning
- ► BPM Signal Processing System
- Summary

Accelerator Facility at WERC - W-MAST

Figure 1: Overview of W-MAST

- 5 MV Tandem Accelerator works as an injector
- Beams from the synchrotron

H⁺ < 200MeV

He²⁺ < 220MeV

C⁶⁺ < 660MeV

 Utilized for medical, biological and material sciences

RF Acceleration

- Untuned RF Cavity using FINEMET core
- Proton 7 MeV → 200MeV Revolution Frequency

 $1.1~\text{MHz} \rightarrow 5.1~\text{MHz}$

Second harmonics to reduce space charge effect

Problems of the Current LLRF Control System

Figure 2: The Current LLRF Control System

- DDS controlled with a DSP
 - We can not obtain repair parts.
- Feedback controls consits of analog circuits
 - Troubles due to aging
- Phase and amplitude of second harmonics are not feedback controlled.
 - A fine adjust ment is difficult due to unstable frequency characteristics.
- An AM/PM Converter calculates beam position.
 - Calculation results depend on input signal level
 - Troubles due to aging
- → Digital circuit using FPGA

New LLRF Control System Using FPGA Based on MTCA.4

Figure 3: Front view

Figure 4: Rear view

- MicroTCA.4 based
- AMC manufactured by Mitsubishi Electric TOKKI Systems (AD x8, DA x2) x3
- Xilinx Zinq XC7Z045 : FPGA + Arm Cortex-A9
- ► EPICS IOC on Linux
- Settings and monitorings through EPICS's channel access
- System clock 150 MHz is generated by multiplying 10 MHz from the timing system.

nade in 2020

made in 2019

The Circuit of New LLRF Control System

- RF feedback control and BPM signal processing are integrated
- Control of amplitude and phase through feedback control of I/Q signals
- Multi-harmonics(< 5th)
- Update the phase accumurater with B-Clock or T-Clock
- Used as a reference signal for IQ modulators/demodulators
- Beam position and phase are calculated with I/Q signal detected from BPM signals.
 - Feedback control of horizontal beam position
 - Suppress phase oscillation

Figure 5: Overview of new LLRF

Feedback Control of Cavity Voltage

Figure 6: Circuit of feedback control of cavity voltage

- 1 The cavity voltage signal is converted to I/Q signals with an IQ demodulator.
- 2 The LPF of the IQ demodulator is important.
- 3 Compare I/Q signals with each set patterns
- Obtain a feedback signal through a PI controller
- 6 RF output is generated with an IQ modulator.

Correction of frequency characteristics of amplitude and phase caused by cables, a cavity and a RF amplifier is required.

→ Gain LUT/Phase Offset LUT High-order 16-bit data of 34 bit frequency data are used for addressing to the LUT.

Adjustment of a Gain/Phase Offset LUT

Figure 7: Setup for adjustment of LUTs

- FB OFF. set Phase Offset LUT to 0. set Gain LUT to 1
- 2 fundamental harmonics (I,Q)=(5000,0).
- Obtain I/Q values of 300 points between 0.5 MHz and 10 MHz.
- **4** Evaluate amplitudes $2\sqrt{I^2 + Q^2}$ and phases arctan Q/I from interpolated IQ values.
- Adjust LUTs to make amplitude and phases keep constants.

Figure 8: Frequency characteristics of interpolated Figure 9: After applying LUT, frequency responses of I/Q values, amplitude and phase before setting LUT. I/Q values are constants.

Commissioning of Feedback Control of Cavity Voltage

Measurement of Closed Loop Gain

- Optimizing P gain and I gain
- Selection of LPF for IQ demodulator
 - 2 stage Tracking CIC vs Tracking CIC + Leaky Integrator

Figure 10: Setup for measurements of closed loop gain.

- Close feedback loop
- ightharpoonup Set (I,Q) = (0, 0)
- Apply disturbances with S21 mode of a network analyzer.
- Observe suppression of the disturbance at the set frequency by the feedback control.

Measurements of Closed Loop Gain

FB OFF
Tracking CIC + LI: K_p = 0, K₁ = 4.00e-4
Tracking CIC + LI: K_p = 0.75, K₁ = 4.0e-4
Tracking CIC + LI: K_p = 0.051, K₁ = 4.0e-4
Tracking CIC + LI: K_p = 0.051, K₁ = 4.0e-4
Tracking CIC × LI: K_p = 0.051, K₁ = 4.0e-4
Tracking CIC × LI: K_p = 0.051, K₁ = 4.0e-4
Tracking CIC × LI: K_p = 0.051, K₁ = 4.0e-4
Tracking CIC × LI: K_p = 0.051, K₁ = 4.0e-4
Tracking CIC × LI: K_p = 0.051, K₁ = 4.0e-4
Tracking CIC × LI: K_p = 0.051, K₁ = 4.0e-4

Figure 11: Comparison of closed loop gains at 1 MHz.

Figure 12: At 9 MHz.

- Sharp valley (supression of the disturbance) at the set frequency → Confirmed operation of feedback control
- Compression of better then 40 dB by applying Last
- Suppression of better than 40 dB by applying I gain.
- (P, I) = (0.398, 4e-4) for wider valley and smaller unwanted enhancement around the valley.
- In the case of 9 MHz and 2 stage Tracking CIC, increasing P gain increases unwanted enhancement around the valley.
 - → Tracking CIC + Leaky Integrator is selected.

Measurement and Simulation of Open Loop Gain

Confirm measurements of closed loop gain by comparison with simulations

→ Evaluate delay of the system by comparison between a measurement and a simulation of open loop gain

Figure 13: Setup for measurements of open loop

Figure 14: Simulation model of open loop.

Adjust $T_{delay1} + T_{delay2}$ so that the simulation matches the measurement.

Figure 15: Comparison between the measurement and the simulation.

$$T_{delay1} + T_{delay2} = 2.6 \mu s$$

Simulation of Closed Loop Gain

Figure 16: Simulation model of closed loop.

Figure 17: Simulation and Measurement of the closed Loop gain at base band.

The simulation agrees with the measurement well.

Step Response

Figure 18: Setup for measurements of step response

Figure 19: Simulation model of step response.

Figure 20: Comparison between the measurement and the simulation of step response. $(K_P, K_I) = (0.398, 4e-4)$

- Settle down to zero without oscillation.
- ➤ The simulation agrees with the measurement well.

Processing of Beam Position Monitor Signals

Figure 21: Circuit of BPM signal processing.

- Diagonal cut rectangular electrode
- **Evaluate amplitude of R/L signals 2\sqrt{I^2+Q^2} after I/Q demodulation**
- Beam position : (R-L)/(R+L)
 - Feedback control of beam position with RF frequency
- Detect phase oscillation with phase difference between RF and BPM signals.
 - Suppress phase oscillation.

Off-beam Commissioning of BPM Signal Processing (1)

Figure 22: Setup of commissioning for BPM signal processing

- ▶ Input same signals to BPM R と BPM L
- Sweep frequency (0.8-6.25MHz)
- Comparison LPF for IQ demodulator
 - 2 stage Tracking CIC
 - ▶ Tracking CIC + Leaky Integrator (k = 10)

Off-beam Commissioning of BPM Signal Processing (2)

signal with 2 stage Tracking CIC.

- The fluctuation is large in the case of 2 stage Tracking CIC.
- Since the pass band is wide, the influence of noise may be appearing.
- Tracking CIC + LI is selected.

Figure 24: In the case of Tracking CIC + Leaky Integrator

Figure 25: Comparison of frequency responses for $f_{rev} = 6.25 MHz$

Simulation of Detection of Phase Oscillation

- A sum signal of BPM R and BPM L is used.
- Check ability to detect phase oscillation when Tracking CIC + Leaky Integrator is used as LPF.

Figure 26: The simulation model for detection of phase oscillation

Figure 27: Frequency response of the circuit to detect phase oscillation.

- ▶ -2dB attenuation in frequency domain (< 2kHz) of phase oscillation is enough small.
- It may be possible to detect phase oscillation.

Summary

- New LLRF Control system based on MTCA.4 is under development.
- Off-beam commissioning are preformed.
 - Phase offset/gain LUT
 - Measurements of closed loop gain and PI gain search
 - step response
 - Comparisons between simulations and measurements show good agreements
 - Selection of LPFs in the IQ demodulator for BPM signal processing.

Future Plan

- VCO is replaced to fix instability of clock.
 - By the way, the system clock is changed to 300 MHz.
- Development of operation interfaces
- Beam Commissioning.

Tracking CIC Filter

CIC Filter

Figure 28: The circuit of CIC

$$H(z) = \frac{1 - z^{-N}}{1 - z^{-1}} \tag{1}$$

Figure 29: Frequency characteristics of CIC filter. Periodic notches occur.

Tracking CIC Filter

Figure 30: The circuit of tracking CIC filter

- Notces at f = hf_{rev}.
- Frequency of notch follows hfrev.
- Harmonics other than selection can be effectively removed.

Leaky Integrator

Figure 31: Circuit of leaky integrator

$$H(z) = \frac{2^{-k}z^{-1}}{1 - (1 - 2^{-k})z^{-1}}$$
 (2)

Figure 32: Frequency characteristics of leaky integrator (k = 10)

LPF with small number of operations.

AM/PM COnverter

Figure 33: Circuit of AM/PM converter to process BPM signals.

- AM/PM converter evaluate horizontal beam position form BPM signals.
 - Convert difference of amplitudes to phase difference which is detected by phase detector.
- ► The calculation result changes, when the input signal level changes (Fig. 34) .
 - It seems that error of output of the phase detecter increases if the signal level is too small or too large.

Figure 34: Varying input signal level of sine wave of 2MHz.

Updating Frequency

Frequency update can be selected : B-Clock Number of pulses propotional to change of a

BM.

- T-Clock Periodic clock synchronized with the timing system.
- Update the phase accumurater with B-Clock or T-Clock
- Used as a reference signal for IQ modulators/demodulators

Figure 35: Frequency control part