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Core-collapse supernova
• Explosion caused by the death 

of massive star with ≳ 10M☉.
– a large amount of ν emission
– formation of NS or BH
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Neutrinos from SN1987A

• The standard scenario is confirmed from 
event number, energy and duration.



What to learn next
Li et al., PRD 103 (2021),

arXiv:2008.04340

• Key physics 
opportunity 
depends on 
the phase.



① Neutronization burst
• Shock dissociates nuclei.
• Protons capture electrons emitting νe.

→ deleptonization  
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① Neutronization burst
• Shock dissociates nuclei.
• Protons capture electrons emitting νe.

→ deleptonization  
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p + e → n + ν

νe



② Accretion phase

proto-neutron star

• Gravitational 
potential of 
accreted matter 
converts to 
thermal energy.

• Neutrinos of all 
flavors are 
emitted by 
thermal process. 
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③ Cooling phase

proto-neutron star

• Shock revives and 
propagates to 
outer layer.

• Heating by matter 
accretion stops.

• Luminosity and 
mean energy of 
neutrinos drop. 
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Three phases of neutrino emission
① neutronization

burst
~ O (10 ms)

② accretion phase
~ O (100 ms)

③ cooling phase
~ O (1 min)

① ② ③

νe

νe

νx

Nakazato et al., ApJS 205 (2013)

target of this study



Why late phase?
• The neutrino signal is mainly determined by 

a relatively small number of parameters: 
mass, radius, and surface temperature.
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Why late phase?
• The neutrino signal is mainly determined by 

a relatively small number of parameters: 
mass, radius, and surface temperature.

log Lv
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Many uncertainties in early phase:
mass accretion, convection, and 
multi-D hydrodynamical instabilities.

Developing 
a basis!



Simulations of PNS colling
• Initial conditions are taken form the results of 

core-collapse simulations.
– PNSs with baryon mass of 1.40－1.86M☉. 

• Quasi-static evolutionary calculation of PNS
– transfer of νe ,νe , νµ ( = ντ =νµ =ντ ) is treated 

in Multigroup Flux Limited Diffusion scheme
– e- + p ↔ n + νe, e+ + n ↔ p +νe, ν + N ↔ ν + N,

ν + e ↔ ν + e, νe + A ↔ A’ + e-, ν + A ↔ ν + A,
e- + e+ ↔ ν +ν, γ* ↔ ν +ν, N + N’ ↔ N + N’ + ν +ν

• Some realistic EOS models are used.



Schematic picture of PNS cooling

ν

(i) contraction (ii) shallow decay (iii) volume cooling
ν ν ν

• Decay time of 
neutrino light 
curve has the 
maximum here.

(i)
(ii)

(iii)



EOS dependence

• Light curve for the shallow decay phase is 
characterized by the high-density EOS.

Nakazato et al., arXiv:2108.03009, accepted by ApJ

– Shen EOS
– LS220 EOS
– Togashi EOS
– T+S EOS

high ρ: Togashi
low ρ: Shen

same high ρ
model

MNS ~ 1.33M☉



Theory of PNS cooling timescale
• Kelvin-Hermholtz timescale

𝜏𝜏KH =
𝐸𝐸𝑔𝑔
𝐿𝐿

• For NS mass 𝑚𝑚 and radius 𝑟𝑟, we assume:
1. luminosity scales with surface area： 𝐿𝐿 ∝ 𝑟𝑟2
2. time dilation in general relativity
3. 𝐸𝐸𝑔𝑔 → 𝐸𝐸𝑏𝑏 (binding energy of NSs)

𝜏𝜏cool ∝
𝐸𝐸𝑏𝑏

𝑟𝑟2 1 − �2𝐺𝐺𝑚𝑚
𝑟𝑟𝑐𝑐2

← gravitational energy
← luminosity

cooling
timescale →



Binding energy of NS as a function 
of mass & radius
• For a large class of EOSs, the following is 

approximately satisfied:
𝐸𝐸𝑏𝑏
𝑚𝑚𝑐𝑐2

=
0.6 × �𝐺𝐺𝑚𝑚

𝑟𝑟𝑐𝑐2
1 − 0.5 × �𝐺𝐺𝑚𝑚

𝑟𝑟𝑐𝑐2
𝑚𝑚： NS mass
𝑟𝑟： NS radius
𝐸𝐸𝑏𝑏： Binding energy of NS

⇒ 𝜏𝜏cool ∝
𝑚𝑚

1.4𝑀𝑀⨀

2 𝑟𝑟
10 km

−3 1
1−0.5𝛽𝛽 1−2𝛽𝛽

, 𝛽𝛽 = 𝐺𝐺𝑚𝑚
𝑟𝑟𝑐𝑐2

Lattimer & Prakash, ApJ 550 (2001)



Decay timescale of ν light curve

𝐿𝐿�𝜈𝜈𝑒𝑒(𝑡𝑡) ∼ 𝐿𝐿0 exp −
𝑡𝑡

𝜏𝜏cool

Nakazato & Suzuki, ApJ 891 (2020),
arXiv:2002.03300

• PNS cooling timescale 
accounts for the decay 
timescale of neutrino 
light curve.

𝜏𝜏cool ∝
𝑚𝑚2

𝑟𝑟3(1−0.5𝛽𝛽) 1−2𝛽𝛽
, 𝛽𝛽 = 𝐺𝐺𝑚𝑚

𝑟𝑟𝑐𝑐2

𝜏𝜏 c
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)

𝑚𝑚2

𝑟𝑟3(1 − 0.5𝛽𝛽) 1 − 2𝛽𝛽

plots are from simulation 
results with different 𝑚𝑚 and 𝑟𝑟



Estimation of NS mass & radius
• Crossing point of neutrino cooling timescale

𝜏𝜏cool = 𝜏𝜏∗ 𝑚𝑚
1.4𝑀𝑀⨀

2 𝑟𝑟
10 km

−3 1
(1−0.5𝛽𝛽) 1−2𝛽𝛽

and total emission energy
𝐸𝐸𝑏𝑏
𝑚𝑚𝑐𝑐2

= 0.6𝛽𝛽
1−0.5𝛽𝛽

𝛽𝛽 = 𝐺𝐺𝐺𝐺
𝑟𝑟𝑐𝑐2

• Numerical results with 
realistic EOSs also 
follow these trends.

→ future EOS constraints

Example



Evaluation of event rate

• Assuming the detection at SuperKamiokande
(32.5 kton, Eth = 5 MeV, w/ energy resolution) 
from a supernova of D = 10 kpc distance.

• Energy spectrum of inverse β decay.
– Strumia & Vissani (2003)

ν

10 kpc 

Nakazato et al., arXiv:2108.03009, accepted by ApJ



Results

• The event rate depends not only on the 
luminosity but also on the average energy.

→ The degeneracy of T and U is lifted.
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Nuclei near PNS surface
• Larger nuclear mass number is estimated for 

Togashi EOS than T+S (Shen) EOS.
→ Cross section of the coherent elastic scattering is

enhanced making the average ν energy higher.

• Thermal insulation by
nuclei

σ ∝ A2

1 / λ ∝ XA・A
A; mass number
ＸA; fraction of nuclei

Nakazato et al.,
PRC 97 (2018),

arXiv:1710.10441



How to observe the cooling 
• Backward cumulative event number

• It is taken as function of backward time from 
the last observed event.

– Togashi EOS
– LS220 EOS
– Shen EOS
– T+S EOS

high ρ: Togashi
low ρ: Shen

D = 10 kpc

fast

slow
cooling



How to observe the cooling 
• Backward cumulative event number

• It is taken as function of backward time from 
the last observed event.

– Togashi EOS
– LS220 EOS
– Shen EOS
– T+S EOS

high ρ: Togashi
low ρ: Shen

same low ρ
model

D = 10 kpc



Advertisement

Figure by
Y. Suwa



Summary
• Neutrino detection from next supernova will 

provide various physics opportunities.
– It depends on the phase.

• To develop a basis of neutrino light curve 
analysis, the late phase is important.
– It is less uncertain than the early phase.

• Neutrino light curve on the late phase is 
determined by EOS as well as the NS mass.
– The high- and low-density properties have 

different impacts on the neutrino signal through 
the NS radius and surface temperature.
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