Overview of the LBNF/DUNE Beamline

Vaia Papadimitriou
Associate Director of Fermilab’s Accelerator Division & LBNF Beamline Manager
NBI2017, Tokai-Mura, Japan
September 18, 2017
Outline

• LBNF/DUNE Scope and Milestones
• Beamline Scope
• Main Requirements & Assumptions
• Overview of the Beamline Reference Design
• Overview of the proposed Optimized Design
• Decision Process for the Optimized Beamline Design
• Summary

- For details on the design of Target Station Decay Pipe and Absorber, more in Salman Tariq’s talk.
- For details on the Target and Horns design, more in Patrick Hurh’s and Chris Densham’s talks.
- For details on Neutrino Flux, more in Mary Bishai’s talk
• CD-1R (Refresh) conceptual design approval in November, 2015.
• CD-3a approval in September, 2017 (Far Site pre-excavation and excavation – South Dakota).
• Our goal for beam to SURF is the 2026 timeframe.
LBNF/DUNE Scope and Milestones

Currently, 1087 DUNE collaborators from 176 Institutions and 30 Nations
Result of NOvA Accelerator upgrades and the Proton Improvement Plan (PIP) for Linac/Booster

Since Jan. 2017 running between 650-700 kW on a continuous basis (peak power, 727 kW)

LBNF proton beam to be extracted from MI-10 straight section

PIP-I+ plans

PIP-II (~2026)
1.2 MW @ 120 GeV
100+ kW @ 800 MeV
LBNF Conventional Facilities at Fermilab

~ 22,000 m²

Main Injector
Beamline for a new Long-Baseline Neutrino Facility

Scope for Beamline Technical Components

Designed to run at 1.2 MW beam power (PIP-II) and upgradable to 2.4 MW

Tunneled excavation

Constructed in Open Cut

LBNF

Scope for Beamline Technical Components

Designed to run at 1.2 MW beam power (PIP-II) and upgradable to 2.4 MW

Tunneled excavation

Constructed in Open Cut

LBNF
Beamline Scope

- **Primary Beam** (beam optics, magnets, magnet power supplies, LCW, vacuum, beam instrumentation).
- **Neutrino Beam** (primary beam window, baffle, target, focusing horns, support modules, instrumentation, horn power supply, target shield pile, decay pipe cooling and windows, hadron absorber, RAW, remote handling, storage of radioactive components, muon systems).
- **Beamline System Integration** (controls, interlocks, alignment, installation infrastructure and coordination).
- **Beamline Modeling and Radiation Physics & Protection**.
- **Near Site Conventional Facilities**.
The driving physics considerations for the LBNF Beamline are the long baseline neutrino oscillation analyses.

Beam directed towards the Sanford Underground Research Facility (SURF) in Lead, South Dakota, 1300 km from Fermilab (5.8 degree vertical bend).

The primary beam, single turn extracted from MI, is designed to transport high intensity protons in the energy range of 60-120 GeV to the LBNF target. (Pulse duration of 10 μs).

A broad band, sign selected neutrino beam with its spectrum to cover the 1$^{\text{st}}$ (2.4 GeV) and 2$^{\text{nd}}$ (0.8 GeV) oscillation maxima => Covering 0.5 ~ 5.0 GeV

All systems designed for 1.2 MW initial proton beam power (PIP-II, ~2026).

Facility is upgradeable to 2.4 MW proton beam power (PIP-III / Booster replaced as well).
What is being designed for 2.4 MW

• Designed for 2.4 MW, since upgrading later would be prohibitively expensive and inconsistent with ALARA:
 – Size of enclosures (primary proton beamline, target chase, target hall, decay pipe, absorber hall)
 – Radiological shielding of enclosures (except from the roof of the target hall, that can be easily upgraded for 2.4 MW when needed)
 – Primary Beamline components
 – The water cooled target chase cooling panels
 – The decay pipe and its cooling and the decay pipe downstream window
 – beam absorber
 – remote handling equipment
 – radioactive water system piping
 – horn support structures are designed to last for the lifetime of the Facility
Beamline Requirements and Assumptions

• Currently assuming 20 year operation of the Beamline: first 5 years at 1.2 MW and for another 15 years at 2.4 MW.
• The Beamline Facility is assumed to be able to operate for a 30 year span. Design life of Target & Absorber Hall Complexes and of Decay Pipe is 50 years; design life of water barrier system around them is 80 years.
• **Uptime** (including the uptime of accelerator complex): aiming to at least 55%.
• Stringent limits on radiological protection of environment, members of public and workers.
• We provide a 6-cell storage morgue with sufficient space for 2 years of LBNF running at 1.2 MW and assume that Fermilab will provide any additional storage needed for radioactive components - C-0 Remote Handling Facility.

Actively implementing lessons learned from NuMI/MINOS, NuMI/NOvA, T2K and other Neutrino Facilities.
LBNF Beam Operating Parameters

Summary of key Beamline design parameters for \(\leq 1.2 \) MW and \(\leq 2.4 \) MW operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Protons per cycle</th>
<th>Cycle Time (sec)</th>
<th>Beam Power (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 1.2) MW Operation - Current Maximum Value for LBNF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton Beam Energy (GeV):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>7.5E+13</td>
<td>0.7</td>
<td>1.03</td>
</tr>
<tr>
<td>80</td>
<td>7.5E+13</td>
<td>0.9</td>
<td>1.07</td>
</tr>
<tr>
<td>120</td>
<td>7.5E+13</td>
<td>1.2</td>
<td>1.20</td>
</tr>
<tr>
<td>(\leq 2.4) MW Operation - Planned Maximum Value for LBNF 2nd Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton Beam Energy (GeV):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.5E+14</td>
<td>0.7</td>
<td>2.06</td>
</tr>
<tr>
<td>80</td>
<td>1.5E+14</td>
<td>0.9</td>
<td>2.14</td>
</tr>
<tr>
<td>120</td>
<td>1.5E+14</td>
<td>1.2</td>
<td>2.40</td>
</tr>
</tbody>
</table>

- Pulse duration: \(10 \) \(\mu s \)
- Beam size at target: tunable 1.0-4.0 mm

(1.1 – 1.9)\(\times 10^{21} \) POT/yr
Protons on target

- The goal for accumulating **120 GeV** protons at the neutrino target with beam power of **1.2 MW** is **1.1×10^{21}** protons-on-target (POT) per year. This assumes **7.5×10^{13}** protons per MI cycle of 1.2 sec. The total LBNF efficiency used in the POT calculation is **0.56 (0.57)** and includes the total expected efficiency and up-time of the accelerator complex as well as the expected up-time of the LBNF Beamline.

 - Proton source: 0.85
 - MI eff. in PIP-II era: 0.93
 - Scheduled accel. shutdowns: 0.84
 - Maintain Beamline (NuMI data): 0.98
 - Horn + target replac.: 0.91 (**0.93** in opt. design assuming one horn and one target repl./year)
 - Programmatic: 0.95

 \[\text{Eff. of accelerator complex: } 0.65 \]

Uptime essentially the same in Reference and Optimized Designs
Overview of the Reference and Optimized Design
Primary Beamline

Beam optics point to 79 conventional magnets: 25 dipoles, 21 quadrupoles, 23 correctors, 6 kickers, 3 Lambertsons, 1 C Magnet
LBNF prototype corrector magnet testing

- Corrector magnet prototype (assembled at IHEP/China) is being currently tested at Fermilab - thermal studies and magnetic measurements.

Chart 1:
- **Strength at magnet center**
 - Strength (T*m) vs. current (A)
 - Blue line: ramp up
 - Red line: ramp down
 - Black line with crosses: IHEP results (hall probe)

Chart 2:
- **Normalized non-dipole fields at center plane (y=0)**
- **Temperature rise**
 - Temperature rise vs. relative time (s)
 - Graph showing temperature rise over time with data points and trend line
 - Data points and summary table included

Graphs:
- Rotating coil probe
- RTDs
Target Shield Pile layout

~ 40% of beam power in target shield pile

Target Chase: 2.2 m/2.0 m wide, 34.3 m long nitrogen-filled and nitrogen plus water-cooled (cooling panels). (It used to be air at CD-1R). Sufficiently big to fit in alternative target/horns.
Decay Pipe Layout

- 194 m long, 4 m inside diameter
- Helium filled
- Double-wall, carbon steel decay pipe, with 20 cm annular gap for cooling
- 5.6 m thick concrete shielding
- It collects ~30% of the beam power, removed by a nitrogen cooling system
Hadron Absorber

Absorber Hall and Service Building

The Absorber is designed for 2.4 MW ~ 30% of beam power in Absorber

Absorber Cooling
Core: water-cooled
Shielding: forced air-cooled

Core blocks replaceable (each 1 ft thick)

Flexible, modular design
1.2 MW reference design target and horns

47 graphite target segments, each 2 cm long

0.2 mm spacing in between
Two interaction lengths, 95 cm
First few fins have “wings”, 26 mm dia. disks

Target cross section

NuMI-like (low energy) with modest modifications target and (two) horns

Tunable neutrino energy spectrum

Operated at 230 kA for LBNF

New Horn power supply needed - reduced pulse width of 0.8 ms to reduce elect. heating.
Main change to the Reference Design since CD-1R

- We have been working on beam optimization studies for the past 3 years.

- During the CD-1R review we presented some future scope options that would allow us to improve the target/horn designs in order to increase the physics potential of DUNE for oscillation physics.

- As a consequence, and in order to maintain flexibility, we had already increased the target “chase” enough to accommodate future target/horn designs before the CD-1R review.

- Refined air-release calculations motivated the switch to inert gas (nitrogen) instead of air for the filling/cooling of the target chase and the cooling of the helium-filled decay pipe.

- This was the subject of a dedicated and successful review in July, 2017.

- Nitrogen is now part of the Reference Beamline Design.
Main change to the Reference Design since CD-1R

<table>
<thead>
<tr>
<th>Decay Volume used</th>
<th>T_{transit} (min)</th>
<th>Release (Ci/yr)</th>
<th>Ar-41 fraction</th>
<th>MEOI (excluding tritium from the shielding)</th>
<th>MEOI (including 17% tritium from shielding)</th>
</tr>
</thead>
<tbody>
<tr>
<td>out of LBNF (TH)</td>
<td>0</td>
<td>37</td>
<td>14.9%</td>
<td>13%</td>
<td>29.9%</td>
</tr>
<tr>
<td>LBNF (PT)</td>
<td>33</td>
<td>16</td>
<td>28.4%</td>
<td>6%</td>
<td>22.5%</td>
</tr>
</tbody>
</table>

Quite laudably, designs and calculations are being done to accommodate the maximum design beam power of 2.4 MW for all components that cannot be retrofitted to this maximal beam power. Furthermore, the recent choice to fill the critical regions with nitrogen rather than air to greatly minimize the troublesome emissions of the relatively long-lived 41Ar is viewed by this committee as a highly commendable choice, well-worth the additional complexities and costs that result.
Optimizing target and horns

- Have been optimizing target and horns for better physics, on the basis of sensitivity to CP violation.
- Encouragement by the CD-1R Review Committee (July 2015) to continue along these lines.
- The optimized design points to a four interaction length target and three horns of new design.
- The optimization leads to significantly more flux, a flatter spectrum in the energy range of interest, reduced high energy tail & better CP sensitivity.

- ~40% improvement in the 2 GeV region
- More than a factor of two below 1 GeV
Beamline activities - Optimized Horns

- All three optimized horn and horn stripline mechanical designs complete (energy deposition and thermal and stress FEA iterations included). 300 kA operation.
1.2 MW Optimized Design for target – water cooled

• Cooling
 – Water cooled target
 – Downstream window and target support must be actively cooled with helium

This is the target that was used in all MARS simulations so far
1.2 MW Optimized Design for target – helium cooled

- Second iteration optimized target design (2.2m long cylindrical, segmented graphite target – ~4λ)

- Cooling
 - Fully helium-cooled

This is the default target for the optimized design and we are presenting its conceptual design in the Fall 2017 reviews.

RAL report, Aug. 2017
Target Hall Complex Conceptual Design
Target Chase Configuration – Optimized vs. Baseline

- Horn A (w/ Target)
- Horn B
- Horn C
- Baffle
- Upstream Decay Pipe Window
- Target Carriage
- Upstream Decay Pipe Window
- Horn 1
- Horn 2
Impacts on other systems

Re-assess:
• Horn support modules
• Horn power supply
• Target shielding/cooling
• Decay pipe shielding/cooling
• Decay pipe upstream window and snout (bigger diameter: 1.0 to 1.5 m)
• Primary Beam window
• Remote handling (casks, morgue capacity analysis, work-cell,..)
• Hadron absorber (the optimized design can allow for a more uniform and less massive absorber)
• Muon shielding in the end of the hadron absorber
• Conventional Facilities (e.g. crane capacity, work-cell size, etc.)

<table>
<thead>
<tr>
<th>System</th>
<th>Opt./Ref - edep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target pile/chase</td>
<td>1.3</td>
</tr>
<tr>
<td>Decay Pipe</td>
<td>1.2</td>
</tr>
<tr>
<td>Absorber</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Remote Handling - Horn Casks

The LBNF optimized Horn cask is longer, wider and taller than the NUMI Horn cask. The NUMI cask with horn weight is 30 ton; the LBNF cask with optimized horn weight is about 52 ton. (Increase crane capacity).

NuMI Horn 2 Cask & LBNF Reference Horn 2 Cask

LBNF Optimized Horn B Cask
Optimizing target and horns

- CP violation sensitivity and possible staging

\[
\sigma = \sqrt{\Delta \chi^2}
\]

\(\delta_{cp}/\pi\)

300 kT MW years exposure

\(v_\mu\) Flux, \(v\) Mode

Unoscillated vs. GeV/m² Year

CP violation sensitivity

- Opt. Engineered (RAL)
- Horn A (RAL)
- Horn A & B (RAL)
- Horn A & C (RAL)
- CDR Reference
Decision to be taken and decision process

- **Should the reference target and horns be changed** to the optimized designs, including impacts on additional associated systems?
 - Joint decision by LBNF/DUNE

- **If not, can the target/horn optimized system be staged** for implementation? If so, what could be the staging for the initial beam operation? We are considering two possible staging scenarios:
 - Two optimized instead of three optimized horns in the beginning of operations.
 - Reference Design with hooks/provisions implemented in the beginning of operations, with the optimized target and horns to be installed later.

- Decision to be taken soon by LBNF/DUNE on the optimized target/horns design after a review in October, 2017.
Decisions to be taken and decision process

• What should the configuration of the Absorber be, once the target and horn configuration is determined?
 – Reference Absorber works with both the Reference and Optimized designs.
 ➢ Under the discretion of LBNF, taking into account beam optimization decisions.

• The decisions will consider factors that include physics performance, radiological constraints, engineering feasibility, feasibility of staging, cost, schedule, and possible partner participation.
DUNE Institutions

- Currently, 1087 DUNE collaborators from 176 Institutions and 30 nations
International Partners for the LBNF Beamline so far

• **IHEP/China:**
 - Corrector magnets for primary beamline – prototype and 23 production magnets (I-CRADA signed in March 2017). Prototype ready and under testing at Fermilab.
 - Ongoing FEA work on the decay pipe windows and activities recently started on the prototyping of upstream decay pipe window.
 - R&D on Hadron Monitor.

• **RAL/UK** (Proposal submitted to STFC. Strongly considering significant support):
 - Target R&D.
 - Target design and production.
 - Possibly associated package for target support systems.
 - Bridge funding for the conceptual design of optimized target.

• **Japan** has allocated funds to investigate areas of collaboration.

• Exploring possibilities for collaboration with **TRIUMF/Canada**.
Summary

- We completed the conceptual design for a beamline further optimized for the physics.
- The main changes from the Reference Design are in the Targetry and Horns systems but there are significant impacts on some other systems as well (Remote Handling, Conventional Facilities, etc.).
- There is an associated 6 month delay, and the critical path goes through the Target Shield Pile installation.
- There are a couple of staging options available, if necessary:
 - Start with two optimized instead of three optimized horns
 - Start with Reference Design and with hooks implemented for the optimized systems