NuMI Beam Control Protection Systems

& Experience on Rogue Pulses

Sam Childress Fermilab

Key NuMI Beam Control Protection Systems

- Accelerator Complex Global Clock System
- Time Line Generator Defining Beam Scenario for Each Cycle
- Comprehensive Beam Permit & Interlock System **
- Failsafe Repeat Beam Loss Protection **
- Extensive Beam Instrumentation & Continuous Monitoring *
- Fully Automated Autotune Precision Beam Position Control
- Multiple Ongoing Status Checks *

** Developed for NuMI

* Significant Upgrade for NuMI

Controlling Where the Beam Goes

- Global Clock System & Time Line Generator
- Generated clock events define destination for each beam pulse
- Each system beam permits continuously monitored
- On a NuMI cycle, systems not involved stay at rest state (These cannot transmit beam if for example a kicker pre-fires)

Fermilab Main Control Room

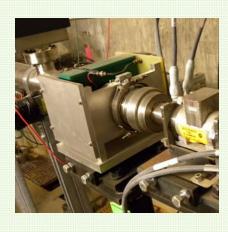
Comprehensive Beam Permit & Interlock System

- Developed specifically for NuMI
 - Quickly became standard for all our intense beams & adopted internationally
- Uses dedicated hardware, based on that originally developed for TeVatron fast abort system
- Permit decision prior to each beam pulse required to enable extraction kicker
- More than 250 inputs for NuMI system
- Final permit decision in last msec before extraction
 - Checks for kicker status, accelerator beam position & angle, power supplies at proper values, good previous pulse

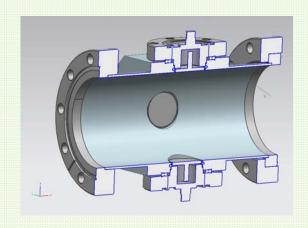
Our most important hardware NuMI protection system

Failsafe Repeat Beam Loss Protection

• For all NuMI beam operation we have required a failsafe safety system ion chamber in the tunnel which trips for a fractional beam loss of ~ 10-5 (normal intensity)


A key requirement to NOT radiate the protected groundwater resource transported by the unshielded deep NuMI proton beam tunnel

We had to develop a design which works well with this constraint → a strong side benefit is no proton beam residual activation



Extensive Beam Instrumentation

2 Pearson Toroids

24 Beam Position Monitors

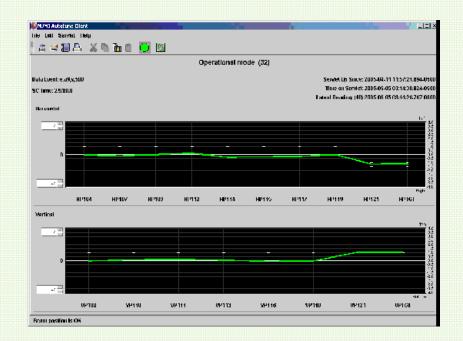
52 Beam Loss Monitors & 4 Extended Length TLM's

11 New Design Profile Monitors ~ 3 parts per million beam loss &

inserted seamlessly into the most intense beams

Used to calibrate BLM's and regular checks on BPM stability

Autotune Beam Position Control


ALWAYS active except at very low intensity

Automatic adjustment of correctors using BPM positions to maintain primary transport & targeting positions

Commissioned at initial turn on for correctors

Vernier control for targeting. Initiate tuning with Automatic adjustment of correctors when positions > 0.125 mm from nominal at target

Very robust

The Process of NuMI Beam Turn-on

- NuMI initial 400 kW design beam power was a large factor above that for our previous beams.
 (NOvA era 700 kW and soon higher still)
- From initial commissioning we looked toward a very controlled approach for every step to ensure an efficient beam commissioning and robust operation to follow
- The large majority of these turn-on steps have been both very efficient and successful as have our sustained many years of operation.
 - ➤ Will return later to the one preventable exception

Beam Commissioning & Operation

- Very efficient proton beam commissioning late 2004
 - ➤ 10 pulses to establish extraction and transport to beam dump 1 km away (target out)
- Neutrino beam commissioning & 1st high intensity each during one weekend in January & February 2005
 - All this while target hall cooling being completed
- Subsequent transition to 24 hour operation by Main Control Room Operators also very smooth
 - A consistent key has been that the system experts maintained hands on responsibility throughout

Experience with Rogue Pulses

- With NuMI operation to date we have transported and targeted 125 million beam pulses
- For the first 8 years of our intense beam operation we experienced NO large beam loss pulses. (above ~1 percent) with a focused beam
 - ➤ Some of the most significant challenges have been dealing with Main injector RF glitches very close to extraction and insuring power supply flattop stability.
 - ➤ Most MI RF problems are now safely aborted prior to extraction. Larger problems have led to loss of bunch capture with a very spread out beam spray
 - ➤ We have also developed high precision digital power supply control which has enabled tightening permit limits

More Recent Experience: 2 Damaging Rogue Pulses

- Feb. 2014 & June 2017
 - In each case focused beam hit and damaged a vacuum seal in NuMi high dispersion region. Each led to ~ 12 hours of beam downtime.
 - Each appeared to be extracted at the wrong momentum—lower by about 0.8%.
 - In later analysis several similar beam pulses were seen, but with only small beam loss.
 - Root cause is NOT understood (probably RF related), but we are implementing what should be a robust solution.
 - We have BPS inputs monitoring Main Injector position and angle at flattop. But this is a straight section with very low dispersion.
 - Solution is new BPS inputs in higher dispersion arc region, where beam position deviation is several mm (We will trip at 1.5 mm)
- With these 2 pulses we were fortunate to not damage a magnet!

By Far: Our Worst NuMI Beam Damage Problem

• The cause – very preventable human error

In early March 2005, final installation for the target chase cooling system was completed slightly ahead of a revised work schedule.

Key people who had led the very successful beam commissioning were not available, but a manager decision to proceed with other physicists was made.

A single bump beam excursion study was done without turning down an already intense beam.

Result – a damaged target water line. We had no spare target. A strong effort to use He back pressure to control the water leak limited down time to ~ 2 months.

