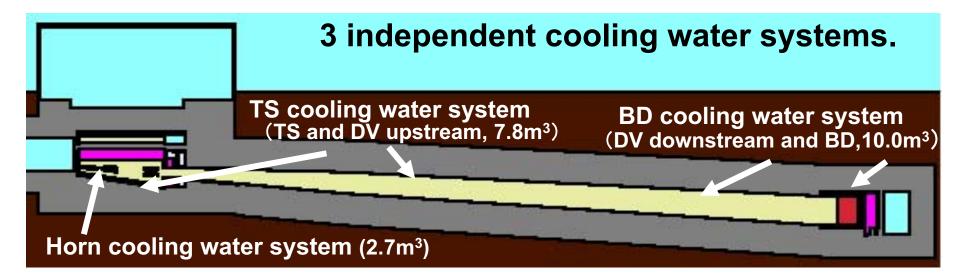
J-PARC NU Radioactive Waste Treatment

Yuichi Oyama (KEK/J-PARC)

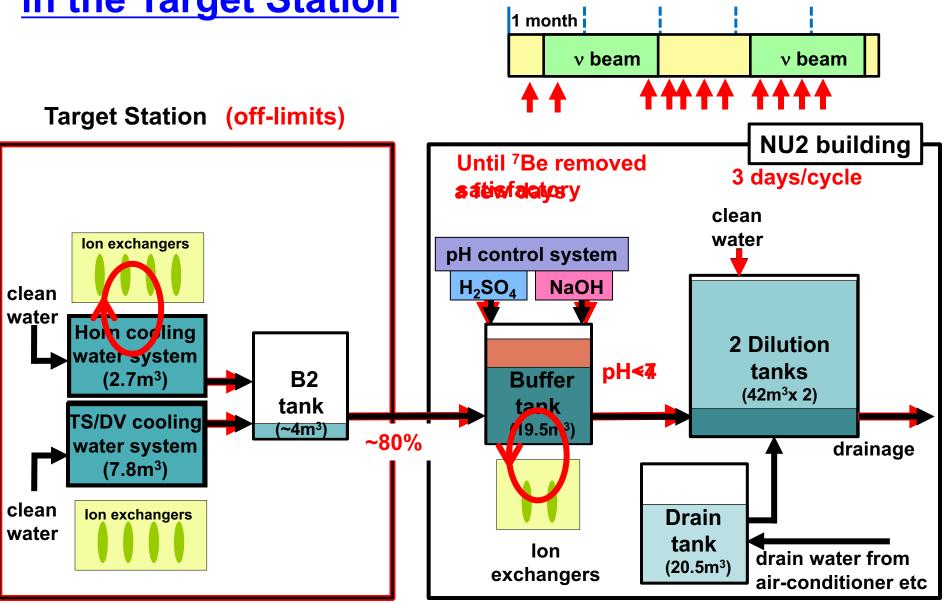

Sep-18-2017

NBI2017@J-PARC

Overview

- In NBI2014, radioactive waste treatment in J-PARC neutrino facility was reported with a title "T2K water drainage and exhaust air". Treatment of ³H, ⁷Be and ²²Na in the radioactive water, and reduction of radiation in exhaust air were reported.
- Please visit following pages for details. <u>https://indico.fnal.gov/conferenceOtherViews.py?view=stand</u> <u>ard&confId=8791</u> <u>http://www-nu.kek.jp/~oyama/nbi2014.oyama.ppt</u>
- Fortunately, we do not have any additional difficulties in ⁷Be and ²²Na in radioactive water, and radiation in exhausted air.
- In this talk, I would like to focus on the ³H problem.
- Sorry but some of the contents overlap with the talk in NBI2014.

Cooling water systems in T2K neutrino beam line


- Horn and TS cooling water are disposed from facilities in an upstream building (NU2), and BD cooling water are disposed from downstream NU3 building.
- Most of products from Oxygen decay within several ten minutes, or have extremely long life. Disposal scenario of only ³H (τ_{1/2}=12.3y) and ⁷Be (τ_{1/2}=53.3d) must be considered.
- Metal ions from beam-line components/pipes are resolved in water. ²²Na ($\tau_{1/2}$ =2.6y) from Aluminum must be considered.

Regulations about radioactive water drainage

• When we dispose radioactive water, there are very strict constraints on both concentration and total radioactivity.

	concentration	Total disposal from neutrino		
³ Н	< 60 Bq/cc	< 120 GBq/year (< 800 GBq/year)		
	(< 42Bq/cc for safety)	< 5000 GBq/year in J-PARC		
⁷ Be	< 20 Pa/oo	< 1.2 GBq/year		
	< 30 Bq/cc	< 3.6GBq/year in J-PARC		
²² Na	< 0.3Bq/cc	< 0.06 GBq/year		

Disposal Scenario of Radioactive Cooling Water in the Target Station

Disposal of radioactive water In FY2016

Total POT (Proton on Target) : 7.26x10²⁰

• ³H from cooling water

facility	³ Н			
Upstram total (NU2)	136.5GBq			
Horn	62.3GBq			
TS+upstream DV	74.2GBq			
BD+downstream DV (NU3)	21.5GBq			
Grand Total	158.0GBq			

Disposal

facility	Disposal	³ H in one disposal	
Upstream(NU2)	Drainage	84m ³ x 42Bq/cc = 3.5GBq	42
Downstream (NU3)	Drainage Tank track	17m ³ x 42Bq/cc = 0.7GBq 10GBq (maximum)	8 2

The disposal cycle is every 3 business days. "50 times in a year" It is almost full.

Mid-term plan of MR (Revised in Jan. 2017)

JFY	2015	2016	2017	2018	2019	2020	2021	2022
		New bui	Idings	HD Target	Long shutdown			
FX power [kW]	390	470	480-500	> 500	700	800	900	1060
SX power [kW]	42	42	50	50-60	60-80	80	80-100	100
Cycle time of main magnet PS New magnet PS	2.48 s		ss production tallation/test	2.48 s	1.3 s	1.3 s	1.3 s	1.3 s
High gradient rf system 2 nd harmonic rf system	Installation Ma		inufacture, instal	lation/test				⇒
Ring collimators	Add.coll imators (2 kW)				Add.colli. (3.5kW)			
Injection system FX system	Kicker PS improvement, Septa manufacture /test							
SX collimator / Local shields						Local shiel	ds	
Ti ducts and SX devices with Ti chamber			ESS					

MR Power supply upgrade delayed to 2019 or later due to funding situation

Future beam power and disposal of radioactive water

- Overburden for the disposal of the radioactive water is proportional not to beam power but to POT or (beam power x beam time).
- In October 2016 April 2017 beam period, the maximum beam power was 470kW. However, the POT in this period was
 7.26 x 10²⁰ and it corresponds to ~360kW x 10⁷ s equivalent.
- In the radiation management, drainage of radioactive water from NU2 is the most critical issue. From the experience in FY2016, the present capability of the NU2 water drainage is

~400kW x 10⁷ s equivalent

 In 2017-2018, small upgrade of the beam power In 2018-2019, beam time will be short because of shutdown of SK In 2019-2020, beam time will be short because of shutdown of MR Upgrade of radioactive water drainage must be prepared for 2020-2021 beam.

Upgrade of radioactive water disposal

- Present system can dispose ³H from ~400kW x 10⁷ s beam. In near future, we must dispose ³H from ~1300 kW x 10⁷ s beam. Final goal will be ~2000 kW x 10⁷ s beam.
- Following upgrade are under consideration in parallel.
 - 1. Larger dilution/drainage tank
 - 2. Improvement of the frequency of drainage
 - 3. Tank track
 - 4. Shortcut in cooling water circuit
- At least, some of them must be ready by 2020 summer. We hope that the upgrades are completed, and we can enjoy Tokyo Olympic without worry....

(1)Larger dilution/drainage tanks

- The inside volume of present tank is 100m³, and the effective volume is 84m³.
- We request a new dilution/drainage tank in a new building. We need at least 300m³ tank.
- However, it is quite expensive. The total cost is order of oku-yen (~M US\$).
- We will continue the budget request, but we cannot be optimistic.

(2)Improvement of the frequency of drainage

- A strong constraint about the drainage work is that it should be done during daytime of business days. Officers in the local government occasionally monitor the drainage.
- We should change the drainage cycle from every three business days to every other business day, and finally every business day.
 1)Manpower is required (costs for the manpower is not linear)
 2)For radiation measurement, instruments and operators only for drainage work would be necessary. In the case of daily drainage, measurements of radioactivity must be done during night.
- The limit will be extended to

~600kW x 10⁷ s/year for 1 drainage/2 business days ~1200kW x 10⁷ s/year for 1 drainage/every business day

• Another manpower is needed.

(3)Tank Truck

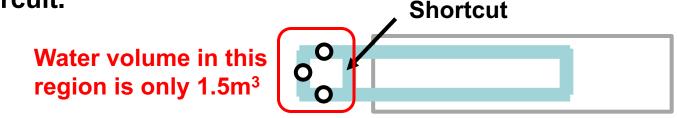
- The back-end section of JAEA provides a service to take over radioactive water by a tank truck.
- The takeover by the tank truck in NU3 started, successfully.

(photo in NU3)

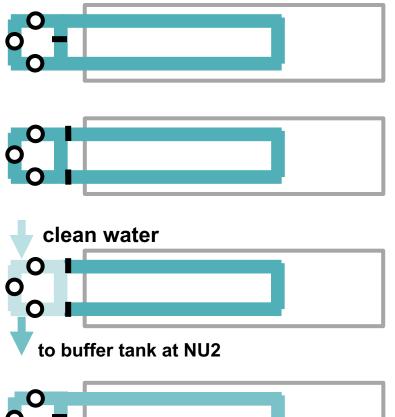

- This can be also done in NU2 after a change of the water circuit.
- If present agreement between neutrino group and JAEA is considered, radioactive water corresponding to

3 x 10²⁰ pot/year (~150kW x 10⁷ s/year) can be disposed by the tank truck.

 We would like to negotiate the frequency after the regular takeover become stable.


Maintenance of cooling water system in summer shutdown

- During the summer shutdown, maintenance works for the cooling water components (pumps, heat-exchangers, filters....) are needed.
 For the safety reason, radioactivity of the water must be reduced.
 After the long beam period, the ³H concentration is thousands Bq/cc, and it must be reduced to be less than ~60Bq/cc.
- Total volume of TS/DV cooling water system is 7.8m³. After 7.8m³ of replacement dilution, the concentration become 1/e. Even after the NU2 buffer tank become full, the concentration become ~1/10. Since additional space for dilution is needed, radioactive water in buffer tank must be disposed first. The maintenance works cannot be started.


(4)Shortcut in cooling water circuit

 In summer 2018, we will construct a shortcut in the cooling water circuit.

- We can start the maintenance work after the replacement dilution of only 1.5m³. With the capacity of buffer tank in NU2, we can reduce the ³H concentration with more than 5 orders of magnitude.
- In 2017, the summer shutdown started on April 12, but the maintenance became possible on September 6. The maintenance period was very short. After the construction of the shortcut, we can keep longer maintenance period.

The maintenance scenario

When the beam period is finished in early summer, ³H concentration is high.

darkness of the water shows concentration of ³H

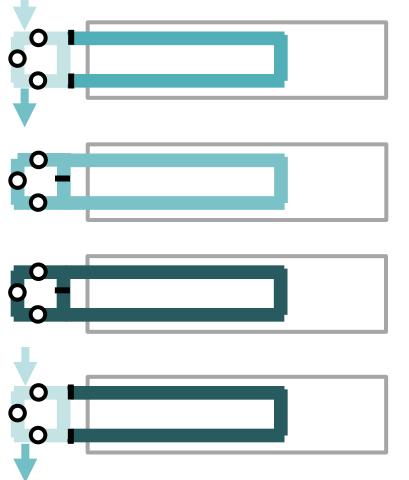
Open the short cut and close the full water circuit.

Partial replacement dilution by clean water. The maintenance become possible very soon after the beam stop.

After the maintenance, close the short cut and open the full water circuit.

Replacement dilution again just before the new beam season. Dilution/drainage from NU2 can be done after the beam start.

Total ³H problem


- The beam in FY2016 was ~360kW x 10⁷ s equivalent. The total ³H from the neutrino facility in FY2016 was 158 GBq.
- From regulations, the disposal limit on ³H is 5000 GBq/year from J-PARC. Since J-PARC consists of 6 facilities (Linac, RCS, MR, MLF, Hadron, neutrino), the quota for the neutrino facility is 800 GBq/year.
- If the results in FY2016 is scaled, ³H from ~1700 kW x 10⁷s equivalent beam can be disposed within the 800GBq/year limit.
 If we can borrow additional quota from other facilities, the quota is enough even for ~2000kW x 10⁷s equivalent beam.
 We thought that special care is not needed for the total ³H
- However, the local government must agree with the drainage even if the ³H is less than the quota.
- In addition, we have a historical condition.
 When J-PARC started in 2008, we reported to the local government that expected ³H from neutrino facility was 120 GBq/year. This is unofficial and soft constraints.

Total ³H problem

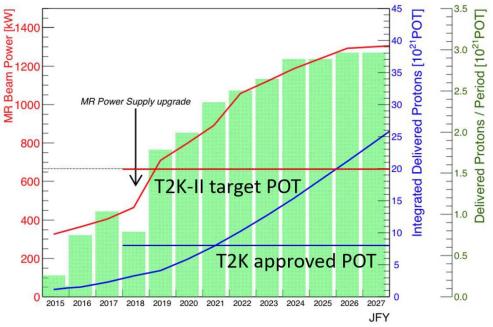
- When a drastic facility upgrade will be made in future, update of the document will be requested by the local government.
- The J-PARC head quarter suggested that we must make some efforts to reduce total ³H in the drainage. At least "Total ³H is in proportional the beam power" is not accepted.

"Confinement" of ³H rich water

 We can reduce ³H to outside of the cooling water system by using the shortcut.

After the partial dilution and maintenance works....

Close the shortcut, open the full water circuit, and wait for the beam restart. Additional dilution is not done.


Concentration of ³H become larger by larger every year.....

We will dilute only the shortcut region.

 The concentration become larger and larger, and finally, approach to (yearly ³H production) = (yearly ³H disposal) equilibrium.

We can reduce ³H!

- Based on (relatively old) beam upgrade plan, drainage of the radioactive water using the confinement over 12 years is calculated.
- About 9% of ³H decay in the water circulation system. Note that the half life of ³H is 12.3 years. Certainly, we can claim that the disposal of

can claim that the disposal of ³H is reduced by 9%.

- About 18% of them remains in the water circulation system after the 12 years beam operation. The ³H concentration is larger than 100000Bq/cc. We will insist that 18% is also reduced (as MLF do). In total, we can reduce by 27%!
- In the first couple of years, number of drainages can be small.
 Construction of larger dilution/disposal tank can be delayed.
 However, it will be certainly needed in a longer time period.

Summary

- In the present radioactive water drainage cycle, the disposal capability corresponds to ~400kW x 10⁷s equivalent beam per year.
- Although large manpower/cost/overburden are necessary, we can improve the drainage cycle to every business day. The limit can be extended to ~1200kW x 10⁷s equivalent.
- Tank truck will help to reduce number of drainage. However, it is equivalent to only ~150kW x 10⁷s beam.
- Shortcut of the water circuit will contribute to secure long maintenance period during the summer shutdown.
- Confinement of ³H employing the shortcut water circuit will reduce the drainage of total ³H from the neutrino facility by 27%.
- Although the ³H confinement will also allows possible delay of construction, larger dilution/disposal tank is definitely needed.

End