Radiation and Enviromental studies for BDF

<u>M. Casolino</u> – H. Vincke – S. Roesler HSE-RP

CERN Physics Beyond Colliders NBI2017 20th September 2017

Outline

- General considerations
- RP evaluation
- Prompt and residual dose
- Classification of the ventilation system
 - Tritium production
 - Tritium out-diffusion
 - Air activation
 - Enviromental impact
- Activation and radioactive waste
- Summary

Recap on the BDF target complex

- High intensity proton beam: 355 kW average beam power, 2*10²⁰ pot/5 years
 - Constraints on the design coming from radiation protection
- Dense target → High cumulated radiation dose, radiation damage on material
- High radiation environment close to CERN boundary
 - Detailed study needed to minimize environmental impact
- New permanent facility → keep flexibility for future installations
 - Ventilation system
 - Dismantling and waste treatment

Calviani 18/09/17

Key beam parameters foreeseen for BDF	
Momentum [GeV/c]	400
SPS beam Intensity per cycle [10 ¹³]	4.0
Cycle length [s]	7.2
Spill duration [s]	1
Expected r.m.s. spot size (H/V) [mm]	6/6
Avg. beam power on target [kW]	355
Avg. beam power on target during spill [kW]	2900
Protons on target (POT)/year	4×10 ¹⁹
Total POT in 5 year's data taking	4×10 ²⁰

General considerations for the BDF target complex

RP evaluation based on FLUKA simulations

- No access during operation into the detector hall is the main condition for current design
- Massive shielding to keep prompt/residual dose rate and airborne radioactivity as low as possible
- Active muon shield with magnets (1.8 T) from the SHiP experiment was included

NBI2017

RP evaluation based on FLUKA simulations

Target Hall

BDF/SHiP as implemented in FLUKA View across the target

- · Air volumes were minimized to lower production of airborne radioactivity
- · Most critical area was embedded in He-environment
- Accurate material compositions were used (AISI316LN w 0.1% Cobalt, ASTM A48 w 0.04% Cobalt, US1010, CENF moraine, ...)

Prompt and residual dose rates

- Prompt rate @ 4×10¹³p / 7.2s
- Residual dose rate @ 2×10²⁰ pot

Prompt dose rates reach **~100 mSv/h** above the He-vessel and drop down to **below 1 µSv/h** above the top concrete shielding (conservative assumption due to non-optimized gaps)

 \rightarrow Expected classification: Supervised Radiation Area (up to 2000h/year) (<3uSv/h) in the target hall

Residual dose rates are at the level of a few μ Sv/h above and next to the He-vessel

Very high residual dose rates next to the target and to the cast iron shielding O(100) Sv/h (1 week cooling)

Remote handling and designated storage areas are therefore foreseen for these elements.

NBI2017

Prompt and residual dose rates

- Prompt rate @ 4×10¹³p / 7.2s
- Residual dose rate @ 2×10²⁰ pot

 \rightarrow Expected classification: Supervised Radiation Area (<15 μ Sv/h) or Simple Controlled Radiation Area (<50 μ Sv/h) with limited stay (400 h/year) in the experimental hall

9

100 rem = 1Sv

Prompt dose rate on the surface

Prompt rate @ 4×10¹³p / 7.2s

Muon prompt dose on surface ~50 μ Sv/h, need to cover the tunnel with at least ~3m of soil on top to lower it down to non-designated area level (<0.5 μ Sv/h).

BONUS: T6 test beam

- Prototype target: reduced dimensions
- 18 blocks: 13 TZM -5 Tungsten
- Calculations performed on last block of TZM and first of Tungsten

1×10⁶

3x10¹⁶ pot assumed

100

Need to use remote handling

Residual dose 2 months x(-5:5)

0 20 40 60 80 100 120 140 160 180 200

100

-40 -20

Dose rate mSv/h	At contact	At 10 cm	At 40 cm
TZM Block	600	200	10
W Block	400	100	10

Need a cask of 90 cm of concrete or 30cm of iron

Lopez 20/09/17

11

Residual dose rate

Tritium production

Air and He Activation

H-3 has a very low radio-toxicity but it can be a radiation hazard when:

- inhaled
- ingested via food or water
- absorbed through the skin
- A simplified geometry was used:
 - Target: one section of Mo, one section of W. No water cooling, no Ta cladding
 - Region between target and proximity shielding filled by He
 - Proximity shielding and passive shielding in Cast Iron
 - 2 m concrete thick walls around passive shielding

Tritium production

Air and He Activation

Calculations performed assuming 5 years of operation \rightarrow 2*10²⁰ pot

	H-3 activity
Мо	10 TBq
W	8 TBq
Не	0.9 GBq
Cast Iron	1 TBq
Concrete	2 MBq

- 95% of H-3 is produced in the target, need to understand out-diffusion from the target.
 - It can be absorbed by the water (HTO form) and circulated in the water cooling system.
- For the iron and concrete shielding tritium outgassing contributes to contamination of air as well as during no beam periods.

Tritium out-diffusion

Air and He Activation

- Assumption of an immediate release efficiency of 100% can be over-conservative
 - Tritium releases were measured years after the shutdown of CERN facilities (e.g. CNGS)
- Diffusion equation has to be solved for arbitrary geometries
 - A newly coded plug-in for FLUKA [1] solves diffusion equation using a Monte Carlo approach
 - It transports nuclides using a stochastic approach in the continuous limit
- In literature diffusion coefficients for tritium are available only for few materials and not in the full temperature range
 - Arrhenius equation used to extrapolate to operational temperatures
- Study of feasibility to **measure out-diffusion of tritium** from Tungsten, Tantalum, TZM, Cast Iron and Concrete
 - Possibility to measure diffusion constants
- Simulated out-diffusion @298K (@423K) from Iron shielding after 2 months is about 33% (38%), while from Tungsten is 0.18% (2.43%)

[1] Development of a computational model for the out-diffusion of radioisotopes from metals, C.Theis and H.Vincke, CERN-RP-2016-173-REPORTS-TN

NBI2017

Air activation

- Calculations performed assuming 5 years operation \rightarrow 2 * 10²⁰ pot
- 99.9% He purity from He purification system → assumed 0.1% air contamination
- For the CA¹ calculation:
 - Assumed a standard breathing rate (1.2 m³/h)
 - For the moment no leakage term

¹ Person working 40h/w, 50w/y with standard breathing rate in air contaminated environment with CA = 1 receives 20 mSv.

	Activity (Bq) after 60 s cooling	Multiple of CA
Air in inner He volume	5.6*10 ⁷	7.5*10 ⁵
Air in middle He volume	7.8*10 ⁵	1.3*10 ³
Air in external He volume	1.5*10 ²	2*10 ⁻²
 First air volume 	1.7*10 ⁷	0.7
Second air volume	8.3*10 ⁴	6.7*10 ⁻³
Inner He volume	2.8*10 ⁹	0.42
 Middle He volume 	4.1*10 ⁷	8.7*10-4
External He volume	9*10 ³	1.5*10 ⁻⁸

Air and He Activation

Air and He Activation

Classification of the ventilation system

- The ventilation system requirements (e.g. pressure cascades) are defined in the ISO 17873:2004
- Four classifications are possible

Classification	Depression values	DAC ¹ values permanent (accident)
C1	<60 Pa	0 (<1)
C2	80 to 100 Pa	<1 (<80)
C3	120 to 140 Pa	<1 (<4000)
C4	220 to 300 Pa	>1 (any)

¹ Slightly different definition compared to CA

- Accident case analysed → breakdown of He vessel
 - CA values calculated mixing the helium and the air of the closed loop
 - CA for accident ~ 2.7 (2000 for 100% Air)
 - Inhaled dose 8 µSv (3 mSv for 100% Air) in ~1 hour in case of accident
- Classification for the ventilation system: C2
- For flexibility for future installations could be classified as C3

Avigni 19/09/17

Dynamic confinement

Classification for the ventilation system: C2/C3

Air and He Activation

18

Radiological impact of air releases

- Identified 6 reference groups around the new BDF target facility
 - Estimates age-independent way
- Parameters of the ventilation stack not yet defined
 - Conservative approach: ground release

	Workers Dechetterie	North-East	North-West	West	South-East	Agriculture
Received dose [nSv/year]	0.07	0.3	0.5	0.5	0.08	0.1

Doses sufficiently below 10 µSv/year from all facilities at CERN, which is the dose objective for public

Air and He Activation

Radioactive waste

Radioactive waste production

- Calculations performed assuming 5 years operation \rightarrow 2 * 10²⁰ pot
- Results presented in terms of Design Limits (DL)
 - If DL > 1 the material/waste is radioactive
- Floor below the target slightly radioactive, increase iron thickness in the helium vessel to leave the facility 'clean' for future installations

1 year of cooling

Radioactive waste production

- Calculations performed assuming 5 years operation → 2 * 10²⁰ pot
- Results presented in terms of Design Limits (DL)
 - If DL > 1 the material/waste is radioactive
- After 10 years of cooling DL > 1 for proximity and passive shielding in the He-vessel

10 years of cooling

Radioactive waste

Summary

- The proposed BDF will be a new permanent facility in the North Area with unprecedented average beam power
- High prompt & residual dose rates → **shielding and remote interventions**
- He and Air activation:
 - ~95% of H-3 is produced in the target
 - Need to understand out-diffusion from the target
 - Air activation drives the classification of the ventilation system to C2 (C3 for flexibility) according to ISO17873:2004
 - **No radiological impact** on public from air releases
- Waste production:
 - Proximity and passive shielding will have DL >> 1 even after 10y of cooling
 - Floor below the target radioactive → increased thickness of the iron shielding in the helium vessel
- First radiological studies were presented

Thank you for your attention