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INntroduction

=> Machine Learning (ML) can help for some of our problems:
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Find optimum parameters for simulations

Online simulations for operation

Time evolutions of parameters and their prediction
Anomalous behaviour of systems identification
Hysteresis prediction

Etc...

-> Incredible proliferation of ML models => easily accessible and more
and more physics-oriented (or orientable)
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Learn from other fields

= We have started to look into this and to apply these models to our
research and daily operation

Machine Learning Arxiv Papers per Year

= ML Arxiv Papers = Moore's Law growth rate (2x/2 years)

40000

~100 new ML
papers %
every day!

30000

ML Arxiv Papers
Relative to 2009 ML Arxiv Papers

- lmage source



https://data-mining.philippe-fournier-viger.com/too-many-machine-learning-papers/

Introduction

Deep recurrent neural network (RNN)

= No time to go into details . i
- Reference and links added to the
slides

Raw data

- Maybe some terms that may or

may not be familiar for all of you:
¢ Deep Neural Networks (DNN): model
composed of a series of different type of
layers
¢ These layers could be:
e linear, convolutional layers (1D or
2D...or even 3D), Recurrent NN as
Long Short Term Memory (LSTM)
layers...

Variables

. Input layer O Hidden layer . Output layer

Convolutional neural network (CNN)

Convolution Convolution

n@e -
@

Input image Pooling Pooling

Convolution and pooling layers Fully connected layers

lmage source



https://www.researchgate.net/figure/Summary-of-conventional-deep-neural-networks-DNNs-and-their-architectures-DNNs-are_fig2_335405454
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2. Surrogate models
a. Crystal shadowing example



Surrogate models

= Many cases where simulations
(like SX multi-turn tracking

simulations) take a while to run...
¢ Test numerical optimisers (see
Verena's talk)
¢ Online prediction of machine
behaviour...

- ..or when taking data is not
always possible...

-> Surrogate ML-based models are a
great solution

¢ A “classic” solution is to take a bunch of

Design
parameters

X,
X

simulations and then linearly
interpolate between points => very
Inaccurate (in most cases) mainly
when the parameter space is large
¢ Train a DNN, random forest (or
whatever other ML classifier or
regressor) on available simulations =>
basically use a ML model to do the
interpolation!
e Thisisone of the simplest
application of ML to accelerators

Xy
—

Expensive, since it involves many
= =7 simulation runs

Output

Sensitivity
analysis

+ Optimization E ﬁ
* Risk analysis
Surrogate
model

A~

~ f(X)

Cheap, since training and employing
a surrogate model is not expensive

lmage source
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https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-i-fundamentals-84697ce4d241

Surrogate model for crystal shadowing @)

= We trained a very simple Multi Layer Perceptron (MLP):
¢ 2 dense layers of 256 neurons each...that's it!

= |Input:
¢ Crystal angle and position, ZS angle
= Output:

¢ Losses in extraction channel
The reproduction of the response is excellent!
Now instead of a few seconds, the simulation takes <Ims...
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3. Image analysis for accelerator systems
a. Auto Encoders for dump system check



Image analysis for accelerator systems

CE/RW
\

¢ Screenimage of the beam

¢ Time evolution of beam profiles (transverse or longitudinal)

¢ Losses evolution in time...

features, translate image content into text

Many system status can be synthesised in one image:

CNN have shown amazing capabilities in classifying images, extract

We tried to use CNN to extract the state of the SPS and LHC dump
system from screen images of the dumped beam
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Just a little step back: LBDS

= The LHC beam dump system in a nutshell
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Supervised Auto Encoder

- We trained an Auto Encoder (AE), either a Variational AE (VAE) or a
Supervised AE (SAE)

- The difference is that instead of training and additional NN on latent
space and generative factors (as done for the VAE), we can add a term

for the loss function of the SAE to do all in once
¢ Thelatentdimension now are the generative factors - idea taken from here [1]
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https://arxiv.org/pdf/2002.00097.pdf

Results on the LBDS simulations

CE/RW
\

E 2

Looking at only from simulations, we can also here obtain very good

results

Basically we can reconstruct the images and their generative

parameters
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Results on the LBDS data D)

- Then we tried to use the same
model on real data...

- ..that's a bit more complicated,
as incredibly large parameter
space (all possible combinations
of filling schemes, for example)

-> Usage of reconstruction
accuracy can help in failure
identification
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4. Time series analysis
a. Beam induced heating prediction based on data
b. Hysteresis compensation for spill quality improvement



Time series analysis

- This is huge topic by itself - stocks forecast, weather forecast...

- Many possibilities and examples at CERN => focus on our 2 cases:
¢ Beam induced heating prediction based on data
¢ Hysteresis compensation for spill quality improvement



Time series analysis

- This is huge topic by itself - stocks forecast, weather forecast...

- Many possibilities and examples at CERN => focus on our 2 cases:
¢ Beam induced heating prediction based on data [1]
¢ Hysteresis compensation for spill quality improvement
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https://docs.google.com/presentation/d/10KbNEuDSp7rwma3Dr97shApW1qwwwzyZ71l14-qprF8/edit?usp=sharing

Model for beam induced heating prediction &)

-> LSTM-based NN used to predict expected beam induced heating of
the injection kicker from intensity and temperature history

=> NN is aware of what intensity there will be in the machine and for how
long

-> Losses calculated on a fixed sequence length and not value by value
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Model for beam induced heating prediction &)

-> LSTM-based NN used to predict expected beam induced heating of
the injection kicker from intensity and temperature history

=> NN is aware of what intensity there will be in the machine and for how
long

-> Losses calculated on a fixed sequence length and not value by value

Ty
Iy I
I -

ale




Model for beam induced heating prediction

-> LSTM-based NN used to predict expected beam induced heating of
the injection kicker from intensity and temperature history

=> NN is aware of what intensity there will be in the machine and for how
long

-> Losses calculated on a fixed sequence length and not value by value

T
I% )i
IO [2

I<i
~




Model for beam induced heating prediction

-> LSTM-based NN used to predict expected beam induced heating of
the injection kicker from intensity and temperature history

-> NN is aware of what intensity there will be in the machine and for how
long

-> Losses calculated on a fixed sequence length and not value by value
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Model for beam induced heating prediction

le5

> Finally we managed to fully 0 - im‘i,"";.f’l?"a e — | .
reconstruct the training and S e @F ' e
validation sets...for the full interval ? i / e
duration e T T & G

ime / Sm

¢ Here we used 40 initial time steps
- [t needed a custom NN

architecture to reproduce data
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Model for beam induced heating prediction &)

- Finally we managed to fully

v
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reconstruct the training and

validation sets...for the full interval
duration

o
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¢ Here we used 40 initial time steps 0 20 40 ) /Se‘o 80 100
- It needed a custom NN

architecture to reproduce data
- We also tried Bayesian layers...

Bayesian layers
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Time series analysis

CE/RW
\

Tot norm losses Gy / p X 10714

This is huge topic by itself - stocks forecast, weather forecast...
Many possibilities and examples at CERN => focus on our 2 cases:

¢ Beam induced heating prediction based on data

¢ Hysteresis compensation for spill quality improvement [2]
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https://indico.cern.ch/event/1074433/contributions/4520776/attachments/2315274/3941116/main.pdf

Hysteresis compensation with simple LSTMs

-> Asthe main SPS quads seems to be the responsible for inducing a
tune variation on the SX cycle, and hence a variation of the spill

macro-structure => model to predict the expected field given the
magnetic and current history

X = {B, I}(to, tN—l). ex: = I(tN, t)

- Using pure LSTMs is not enough...

== Ground truth
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Hysteresis compensation with simple LSTMs

As the main SPS quads seems to be the responsible for inducing a
tune variation on the SX cycle, and hence a variation of the spill

macro-structure => model to predict the expected field given the
magnetic and current history

X = {B, I}(to, tN—l). ex = I(tN, t)
Using pure LSTMs is not enough...
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Hysteresis compensation with PINN

To make it work, we had to use more advanced models
To properly model hysteresis, we used Physics Informed NN [3, 4]
Basically we include in the loss function to train the NN information

about the physical phenomenon under interest
¢ Forexample, if the system is governed by the following:

N 2

ay +y = cx(t)

¢ Then we can make a PINN with the following loss function:
N
c=y 5 (aly=v5+8]y =¥ + 7 [y - mvee ;)
n=1

=> |t gave results where all other NN topology failed!
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https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2011.13511

Hysteresis compensation with PINN
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To make it work, we had to use more advanced models
To properly model hysteresis, we used Physics Informed NN [3, 4]
Basically we include in the loss function to train the NN information

about the physical phenomenon under interest
¢ Forexample, if the system is governed by the following:

ay +y = cx(t)

¢ Then we can make a PINN with the following loss function:

N
c=y 5 (aly=v5+8]y =¥ + 7 [y - mvee ;)
n=1

It gave results where all other NN topology failed!
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https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2011.13511
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5. Conclusions



Conclusions

- Thiswas just a very short summary of what we explored so far..and
completely missing some important details

= For example:

¢ Longitudinal tomography with VAE
¢ Neural ODE networks
¢ Hamiltonian NN...

- We have shown a few interesting problems that had no solutions

since we started tackling them with ML

¢ Many others could be addressed - the choice of already available models and possible
combinations are enormous

& For example, could we speed up tracking for SX using Hamiltonian NN?

¢ Could we exploit NN to speed up Monte Carlo tracking routines for losses estimation?

-> Most of the examples here are not yet fully used in daily operation (we
only used the heating model last year) - the optimal exploitation will
come when we will deploy them!



Thanks!




Putting VAE and surrogate models together

> We exploited the usage of VAE,
the idea of SM and reinforcement
learning (see Verena's talk) to
Mmake a synthetic environment of
a transfer line

-> Basically we can train a RL agent
on synthetic data and tune A
hyperparameters, compare | pormetersd
agents..and more!

= Paper on its way...

RL agent Environment

& A
Synthetic AWAKE

Action

Reward

Observation




