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➔ Machine Learning (ML) can help for some of our problems:
◆ Find optimum parameters for simulations
◆ Online simulations for operation 
◆ Time evolutions of parameters and their prediction
◆ Anomalous behaviour of systems identification
◆ Hysteresis prediction
◆ Etc…

➔ Incredible proliferation of ML models => easily accessible and more 
and more physics-oriented (or orientable)

◆ Learn from other fields 
➔ We have started to look into this and to apply these models to our 

research and daily operation 

Introduction

Image source

https://data-mining.philippe-fournier-viger.com/too-many-machine-learning-papers/


Introduction

➔ No time to go into details
➔ Reference and links added to the 

slides 
➔ Maybe some terms that may or 

may not be familiar for all of you:
◆ Deep Neural Networks (DNN): model 

composed of a series of different type of 
layers

◆ These layers could be:
● linear, convolutional layers (1D or 

2D…or even 3D), Recurrent NN as 
Long Short Term Memory (LSTM) 
layers…

Image source

https://www.researchgate.net/figure/Summary-of-conventional-deep-neural-networks-DNNs-and-their-architectures-DNNs-are_fig2_335405454
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➔ Many cases where simulations 
(like SX multi-turn tracking 
simulations) take a while to run…

◆ Test numerical optimisers (see 
Verena’s talk)

◆ Online prediction of machine 
behaviour…

➔ …or when taking data is not 
always possible…

➔ Surrogate ML-based models are a 
great solution

◆ A “classic” solution is to take a bunch of 
simulations and then linearly 
interpolate between points => very 
inaccurate (in most cases) mainly 
when the parameter space is large

◆ Train a DNN, random forest (or 
whatever other ML classifier or 
regressor) on available simulations => 
basically use a ML model to do the 
interpolation!
● This is one of the simplest 

application of ML to accelerators 

Surrogate models 

Image source

https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-i-fundamentals-84697ce4d241


➔ We trained a very simple Multi Layer Perceptron (MLP): 
◆ 2 dense layers of 256 neurons each…that’s it!

➔ Input: 
◆ Crystal angle and position, ZS angle

➔ Output:
◆ Losses in extraction channel 

➔ The reproduction of the response is excellent! 
➔ Now instead of a few seconds, the simulation takes <1ms…

Surrogate model for crystal shadowing
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➔ Many system status can be synthesised in one image:
◆ Screen image of the beam
◆ Time evolution of beam profiles (transverse or longitudinal)
◆ Losses evolution in time…

➔ CNN have shown amazing capabilities in classifying images, extract 
features, translate image content into text

➔ We tried to use CNN to extract the state of the SPS and LHC dump 
system from screen images of the dumped beam

Image analysis for accelerator systems



➔ The LHC beam dump system in a nutshell

Just a little step back: LBDS

BTVDD image



➔ We trained an Auto Encoder (AE), either a Variational AE (VAE) or a 
Supervised AE (SAE)

➔ The difference is that instead of training and additional NN on latent 
space and generative factors (as done for the VAE), we can add a term 
for the loss function of the SAE to do all in once

◆ The latent dimension now are the generative factors - idea taken from here [1]

Supervised Auto Encoder

Li (θ,ϕ)=−Ez∼qθ(z∣xi)[logϕ(xi∣z)]+ wKL KL(qθ(z∣xi)∣∣p(z)) + wg MSE(c, Z) 

[c] Simulations [X] [Z]E D [X’]

Generative parameters BTVDD image

SAE

=0

https://arxiv.org/pdf/2002.00097.pdf


Results on the LBDS simulations

➔ Looking at only from simulations,  we can also here obtain very good 
results

➔ Basically we can reconstruct the images and their generative 
parameters



➔ Then we tried to use the same 
model on real data…

➔ …that’s a bit more complicated, 
as incredibly large parameter 
space (all possible combinations 
of filling schemes, for example)

➔ Usage of reconstruction 
accuracy can help in failure 
identification

Results on the LBDS data

Reconstruction 

Real data 
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➔ This is huge topic by itself - stocks forecast, weather forecast…
➔ Many possibilities and examples at CERN => focus on our 2 cases:

◆ Beam induced heating prediction based on data
◆ Hysteresis compensation for spill quality improvement

Time series analysis
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Time series analysis

…...

https://docs.google.com/presentation/d/10KbNEuDSp7rwma3Dr97shApW1qwwwzyZ71l14-qprF8/edit?usp=sharing


➔ LSTM-based NN used to predict expected beam induced heating of 
the injection kicker from intensity and temperature history

➔ NN is aware of what intensity there will be in the machine and for how 
long

➔ Losses calculated on a fixed sequence length and not value by value

Model for beam induced heating prediction
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➔ Finally we managed to fully 
reconstruct the training and 
validation sets...for the full interval 
duration

◆ Here we used 40 initial time steps

➔ It needed a custom NN 
architecture to reproduce data

Model for beam induced heating prediction



Model for beam induced heating prediction

Bayesian layers

➔ Finally we managed to fully 
reconstruct the training and 
validation sets...for the full interval 
duration

◆ Here we used 40 initial time steps

➔ It needed a custom NN 
architecture to reproduce data

➔ We also tried Bayesian layers…



➔ This is huge topic by itself - stocks forecast, weather forecast…
➔ Many possibilities and examples at CERN => focus on our 2 cases:

◆ Beam induced heating prediction based on data
◆ Hysteresis compensation for spill quality improvement [2]

Time series analysis

https://indico.cern.ch/event/1074433/contributions/4520776/attachments/2315274/3941116/main.pdf


➔ As the main SPS quads seems to be the responsible for inducing a 
tune variation on the SX cycle, and hence a variation of the spill 
macro-structure => model to predict the expected field given the 
magnetic and current history

➔ Using pure LSTMs is not enough…

Hysteresis compensation with simple LSTMs
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➔ To make it work, we had to use more advanced models
➔ To properly model hysteresis, we used Physics Informed NN [3, 4]
➔ Basically we include in the loss function to train the NN information 

about the physical phenomenon under interest
◆ For example, if the system is governed by the following: 

◆ Then we can make a PINN with the following loss function:

➔ It gave results where all other NN topology failed! 

Hysteresis compensation with PINN

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2011.13511
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➔ This was just a very short summary of what we explored so far…and 
completely missing some important details 

➔ For example: 
◆ Longitudinal tomography with VAE
◆ Neural ODE networks
◆ Hamiltonian NN…

➔ We have shown a few interesting problems that had no solutions 
since we started tackling them with ML

◆ Many others could be addressed - the choice of already available models and possible 
combinations are enormous  

◆ For example, could we speed up tracking for SX using Hamiltonian NN? 
◆ Could we exploit NN to speed up Monte Carlo tracking routines for losses estimation?

➔ Most of the examples here are not yet fully used in daily operation (we 
only used the heating model last year) - the optimal exploitation will 
come when we will deploy them!

Conclusions



Thanks!



➔ We exploited the usage of VAE, 
the idea of SM and reinforcement 
learning (see Verena’s talk) to 
make a synthetic environment of 
a transfer line

➔ Basically we can train a RL agent 
on synthetic data and tune 
hyperparameters, compare 
agents…and more! 

➔ Paper on its way…

Putting VAE and surrogate models together


