Study of the $K^+ \to \pi^0 e^+ \nu \gamma$ decay: preliminary results from the NA62 experiment

Mauro Piccini

INFN - Perugia (Italy)

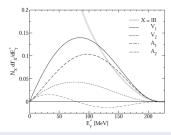
mauro.piccini@pg.infn.it

on behalf of the NA62 Collaboration

KAON 2022 Conference - Osaka - Japan

September 14, 2022

$K^+ \to \pi^0 e^+ \nu \gamma$ decay: state of the art


$$DE(a) + IB(b) + INT$$

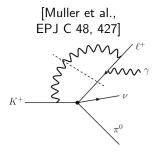
Divergent decay amplitude for $E_{\gamma} \rightarrow 0$ and $\theta_{e,\gamma} \rightarrow 0$ due to IB component.

[Kubis et al., EPJ C 50, 557]

$$R_j = rac{\mathcal{B}(\mathsf{Ke}3\gamma^j)}{\mathcal{B}(\mathsf{Ke}3)} = rac{\mathcal{B}(\mathsf{K}^+ o \pi^0 \mathrm{e}^+ \nu \gamma \mid E_\gamma^j, \theta_{\mathrm{e},\gamma}^j)}{\mathcal{B}(\mathsf{K}^+ o \pi^0 \mathrm{e}^+ \nu (\gamma))}$$

		$E\gamma$ cut (*)	θ_{e}, γ cut (*)	O(ρ ⁰) ChPT [EPJ C 50, 557]	ISTRA+	OKA
	$R_1 \ (\times 10^2)$	E_{γ} $>$ 10 MeV	$\theta_{e,\gamma} > 10^{\circ}$	1.804 ± 0.021	1.81 ± 0.03 ± 0.07	1.990 ± 0.017 ± 0.021
ĺ	$R_2 \ (\times 10^2)$	$E_{\gamma} >$ 30 MeV	$\theta_e, \gamma > 20^{\circ}$	0.640 ± 0.008	0.63 ± 0.02 ± 0.03	0.587 ± 0.010 ± 0.015
	R_2 ($\times 10^2$)	F~ > 10 MeV	$0.6 < \cos \theta. \sim < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

Most recent theoretical calculation [Khriplovich et al., PAN 74, 1214]: $R_2 = (0.56 \pm 0.02)\%$


(*) in the kaon rest frame

$K^+ \to \pi^0 e^+ \nu \gamma$ decay: T-asymmetry

T-odd observable ξ (in the kaon rest frame):

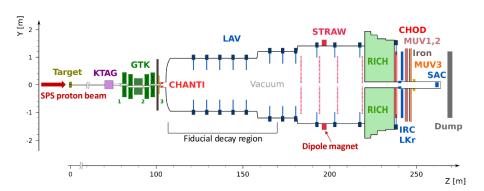
$$\xi = \frac{\overrightarrow{p_{\gamma}} \cdot (\overrightarrow{p_{e}} \times \overrightarrow{p_{\pi}})}{m_{K}^{3}} \; ; \; A_{\xi} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

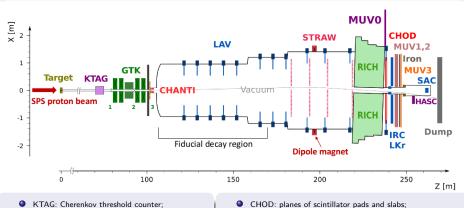
Non-zero A_{ξ} values due to NLO (one-loop) electromagnetic corrections

State of the art:

- $\bullet \ |A_{\varepsilon}^{SM \ and \ beyond}| < 10^{-4}$
- $A_{\xi}^{ISTRA+}(R_3) = (1.5 \pm 2.1) \times 10^{-2}$
- No measurements provided for R_1 and R_2

The NA62 experiment at CERN


- Main goal: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement; NA62 programme covers the full K^+ physics.
- Detector installation completed in 2016.
- Physics runs in 2016, 2017 and 2018.
- Measurement of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ from full 2016+2017+2018 (run 1) data set published: [JHEP 06 (2021) 093].
- Data taking resumed in July 2021 (run2), approved up to CERN LS3 (until 2025).


NA62 is located at CERN in the *North Area*, exploiting a 400 GeV/c proton beam extracted from the SPS accelerator.

NA62 beam [2017 JINST 12 P05025]

- SPS beam: 400 GeV/c proton on beryllium target
- Secondary hadron 75 GeV/c beam
- 70% pions, 24% protons, 6% kaons
- Nominal beam particle rate (at GTK3): 750 MHz
- Average beam particle rate during 2018 data-taking: 450 500 MHz

NA62 detector [2017 JINST 12 P05025]

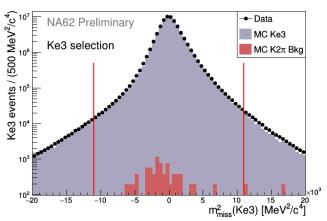
- KTAG: Cherenkov threshold counter:
- GTK: Si pixel beam tracker;
- CHANTI: stations of plastic scintillator bars;
- LAV: lead glass ring calorimeters:
- STRAW: straw magnetic spectrometer;
- RICH: Ring Imaging Cherenkov counter;
- MUV0: off-acceptance plane of scintillator pads:

- LKr: electromagnetic calorimeter filled with liquid krypton;
- MUV1,2: hadron calorimeter;
- MUV3: plane of scintillator pads for muon ID;
 - HASC: near beam lead-scintillator calorimeter:
- SAC: small angle shashlik calorimeter.

IRC: inner ring shashlik calorimeter;

Measurement of R_i : strategy

$$R_{j} = \frac{\mathcal{B}(Ke3\gamma^{j})}{\mathcal{B}(Ke3)} = \frac{N_{Ke3\gamma^{j}}^{obs} - N_{Ke3\gamma^{j}}^{bkg}}{N_{Ke3}^{obs} - N_{Ke3}^{bkg}} \cdot \frac{A_{Ke3}}{A_{Ke3\gamma^{j}}} \cdot \frac{\epsilon_{Ke3}^{trig}}{\epsilon_{Ke3\gamma^{j}}^{trig}}$$


- Background estimation performed using both data and MC.
- Acceptances: evaluated by MC.
- Signal (Ke3 γ) and normalization (Ke3) channels share most of the selection criteria (except for the radiative photon): first-order-cancellation of systematics effects.
- Trigger efficiencies: measured with data. Almost equal for signal and normalization (within per mill precision) since trigger conditions refer to the presence of the e^+ only.
- Only statistical uncertainty of $N_{Ke3\gamma^j}^{obs}$ and N_{Ke3}^{obs} is propagated as statistical uncertainty to the R_j measurement, all the rest is considered as systematic.
- Full 2017 and 2018 data sets have been analyzed.

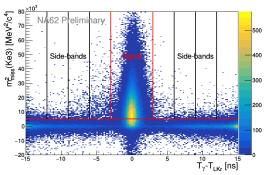
$Ke3\gamma$ selection criteria

- ullet K⁺ reconstructed in GTK and associated to KTAG, e^+ reconstructed in STRAW and associated to CHOD, RICH and LKr detectors
- $\pi^0 \to \gamma \gamma$ identified selecting two energy clusters in LKr, applying kinematic conditions on photons pair invariant mass
- ullet Radiative γ identified selecting an in-time and isolated energy cluster in LKr
- ullet e^+ PID (μ^+ and π^+ rejection) using RICH ring radius and LKr-STRAW E/p
- In-time extra activity in LKr, LAV, IRC and SAC not allowed, in order to rejec ${\rm t} K^+ \to \pi^0 \pi^0 e^+ \nu$ (Ke4n) background
- In-time signal in MUV3 not allowed for further rejection of μ^+
- Anti-coincidence between the position of the radiative photon cluster in LKr and the extrapolation of track at the LKr plane, to reject $K^+ \to \pi^0 e^+ \nu$ events with a photon emitted by the positron interaction with the detector material (bremsstrahlung)
- Dedicated kinematic conditions to reject $K^+ \to \pi^+ \pi^0 \pi^0$ (K3 π^0) and $K^+ \to \pi^+ \pi^0$ (K2 π) backgrounds
- Kinematic selection using the two main observables:

$$m_{miss}^2(\text{Ke3}\gamma) = (P_K - P_e - P_{\pi^0} - P_{\gamma})^2 = m^2(\nu)$$

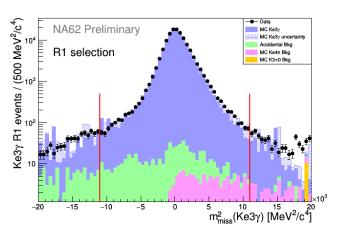
 $m_{miss}^2(\text{Ke3}) = (P_K - P_e - P_{\pi^0})^2 = m^2(\nu\gamma)$

Normalization selected events (Ke3)

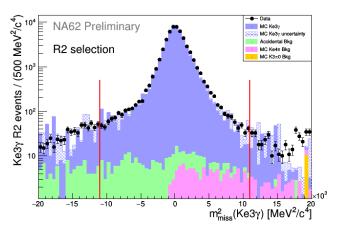


- Same selection as for the signal apart from the radiative photon
- 66M selected events
- Almost background free: $B/S \sim 10^{-4}$

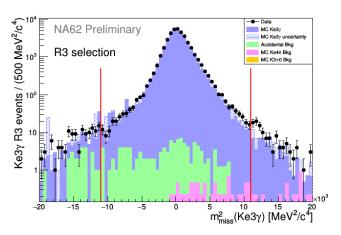
September 14, 2022


Main background source of Ke3 γ selection: accidentals

Accidental event: $K^+ \to \pi^0 e^+ \nu$ decay (or K2 π with π^+ mis-ID) + additional LKr cluster that mimics the radiative photon


- Dedicated cut in signal selection using $m_{miss}^2(Ke3)$ observable
- Background in signal region estimated with data from the out-of-time side-bands

Signal selected events (Ke3 γ - R_1)


- 130K selected events in R₁
- Background contamination: $B/S \simeq 0.5\%$

Signal selected events (Ke3 γ - R_2)

- 54K selected events in R₂
- Background contamination: $B/S \simeq 0.6\%$

Signal selected events (Ke3 γ - R_3)

- 39K selected events in R₃
- Background contamination: $B/S \simeq 0.3\%$

Number of observed events (preliminary)

Selection	N ^{obs}	Statistical relative uncertainty		
Ke3	$66.378 \cdot 10^6$	0.01%		
$Ke3\gamma(R_1)$	$129.6 \cdot 10^3$	0.3%		
$Ke3\gamma(R_2)$	$53.6 \cdot 10^3$	0.4%		
$Ke3\gamma(R_3)$	$39.1 \cdot 10^{3}$	0.5%		

These statistical uncertainties on R_j measurements improve the state of the art by a factor $\simeq 3$

Summary of signal selections backgrounds (preliminary)

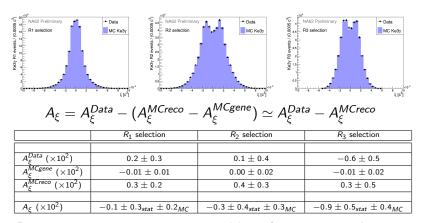
Bkg source	R1	R2	R3	
Accidentals	$(4.9 \pm 0.2 \pm 1.3) \cdot 10^2$	$(2.3 \pm 0.2 \pm 0.3) \cdot 10^2$	$(1.1 \pm 0.1 \pm 0.5) \cdot 10^2$	
$K^+ o \pi^0 \pi^0 e^+ u$	$(1.1 \pm 1.1) \cdot 10^2$	$(1.1 \pm 1.1) \cdot 10^2$	$(0.07 \pm 0.07) \cdot 10^2$	
$K^+ o \pi^+ \pi^0 \pi^0$	< 20	< 20	< 20	
$K^+ o \pi^+ \pi^0 \gamma$	< 2	< 2	< 2	
Total	$(5.9 \pm 1.7) \cdot 10^2$	$(3.4 \pm 1.1) \cdot 10^2$	$(1.1 \pm 0.6) \cdot 10^2$	
B/S	0.46%	0.64%	0.29%	

- B/S < 1%
- The contribution of the uncertainty of the background estimation is small when propagated to the final R_j measurements (0.2% relative in the worst case)

Acceptances measurements (preliminary)

Selection	A [%]	Relative uncertainty	
Ke3	3.839 ± 0.002	0.06%	
$Ke3\gamma(R_1)$	0.443 ± 0.001	0.2%	
$Ke3\gamma(R_2)$	0.513 ± 0.002	0.4%	
$Ke3\gamma(R_3)$	0.431 ± 0.002	0.4%	

Uncertainties given only by the limited statistics of MC samples


NA62 preliminary R_i measurements

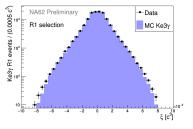
	O(p ⁶) ChPT	ISTRA+	OKA	NA62 preliminary
$R_1 \ (\times 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.684 \pm 0.005 \pm 0.010$
$R_2 \ (\times 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.599 \pm 0.003 \pm 0.005$
$R_3 \ (\times 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.523 \pm 0.003 \pm 0.003$

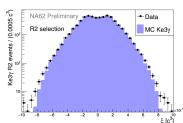
Uncertainty source	$\delta R_1/R_1$	$\delta R_2/R_2$	$\delta R_3/R_3$
Statistical	0.3%	0.5%	0.6%
Acceptances from MC	0.2%	0.4%	0.4%
Background estimation	0.1%	0.2%	0.1%
LKr response modeling	0.5%	0.6%	0.5%
Theoretical model	0.1%	0.5%	0.1%
Total systematic	0.6%	0.9%	0.6%
Total stat+syst	0.7%	1.0%	0.8%

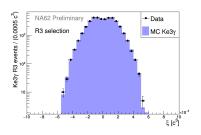
- Achieved precision on R_i measurements equal/better than 1% relative
- State of the art improved by a factor between 2.0 and 3.6 in terms of relative precision
- Relative discrepancy with theory of 6-7% in all three measurements
- NA62 result for R_2 is half way between the two latest theoretical predictions [Kubis et al., EPJ C 50, 557] and [Khriplovich et al., PAN 74, 1214]

NA62 preliminary A_{ξ} measurements

- R_3 T-asymmetry precision improved by a factor greater than 3: $A_{\varepsilon}^{ISTRA+}(R_3)=(1.5\pm 2.1)\times 10^{-2}$
- First measurements ever performed for R_1 and R_2 T-asymmetry


Conclusions


- New results (preliminary) from the NA62 experiment on the study of the $K^+ \to \pi^0 e^+ \nu \gamma$ process using 2017 and 2018 data sets
- Measurements of Ke3 γ branching fraction ratio (R_j) have been performed, showing 6-7% relative discrepancy with *ChPT O* (p^6) calculations
- Experimental relative precision of R_j measurements improved by a factor between 2.0 and 3.6, relative uncertainties $\leq 1\%$
- T-asymmetry measurements have been performed: still compatible with zero, experimental sensitivity far from the theoretical expectations
- First T-asymmetry measurements for R_1 and R_2 , improvement by a factor greater than 3 for R_3


SPARES

T-odd observable

References

- 1 Kubis et al., Eur. Phys. J. C 50 (2007), pp. 557-571
- 2 Khriplovich et al., Phys. Atom. Nucl. 74 (2011), pp. 1214–1222
- 3 Braguta et al., Phys. Rev. D 65 (2002), p. 054038
- 4 Braguta et al., Phys. Rev. D 68 (2003), p. 094008
- 5 Muller et al., Eur. Phys. J. C 48 (2006), pp. 427-440
- 6 Akimenko et al. (ISTRA+ Collaboration), Phys. Atom. Nucl. 70 (2007), p. 702
- 7 Polyarush et al. (OKA Collaboration), Eur. Phys. J. C 81.2 (2021), p. 161
- 8 Gatti, Eur. Phys. J. C 45 (2006), pp. 417-420