#### Fractional Topological Charge in Lattice Abelian Gauge Theory

Motokazu Abe Kyushu University (M2) with H. Suzuki, O. Morikawa

> KEK-TH 2022 @ Online

Based on Abe, Morikawa, Suzuki, arXiv:2210.12967

### Recent Studies about 't Hooft Anomaly

- Discussion of the low-energy dynamics of gauge theories based on the mixed 't Hooft anomaly between discrete and higher-form symmetries. (Gaiotto, Kapustin, Seiberg, Willett, arXiv:1412.5148 Gaiotto, Kapustin, Komargodski, Seiberg, arXiv:1703.00501)
- This type of application of the anomaly has been studied vigorously.
  - ✓ Yamaguchi, arXiv:1811.09390
  - ✓ Hidaka, Hirono, Nitta, Tanizaki, Yokokura, arXiv:1903.06389
  - ✓ Honda, Tanizaki, arXiv:2009.10183
  - ✓ etc
- Keywords: 't Hooft anomaly, higher-form symmetry

# $\mathbb{Z}_N$ One-form Gauge Symmetry

| $\mathbb{Z}_N$ zero-form gauge symmetry                                                                                                                                      | $\mathbb{Z}_N$ one-form gauge symmetry                                                                                                                                                           |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>A pair, U(1) gauge field A<sub>μ</sub> and scalar field φ, makes Z<sub>N</sub> one-form gauge field.</li> <li>Constraint NA<sub>μ</sub> = ∂<sub>μ</sub>φ</li> </ul> | <ul> <li>A pair, U(1) two-form gauge field B<sub>µν</sub> and U(1)gauge field C<sub>µ</sub>, makes Z<sub>N</sub> two-form gauge field.</li> <li>Constraint For short, we writ NB = dC</li> </ul> | e |
| • $\mathbb{Z}_N$ zero-form gauge transformation<br>$\phi \mapsto \phi + N\lambda$<br>$A_\mu \mapsto A_\mu + \partial_\mu \lambda$                                            | • $\mathbb{Z}_N$ one-form gauge transformation<br>$C_\mu \mapsto C_\mu + N\lambda_\mu$<br>$B_{\mu\nu} \mapsto B_{\mu\nu} + \partial_{[\mu}\lambda_{\nu]}$                                        |   |

## SU(N) Gauge Theory with $\theta$ Term

• Action:  $S = -\frac{1}{2g^2} \int \operatorname{tr}(f \wedge \star f) + \frac{\theta}{8\pi^2} \int \operatorname{tr}(f \wedge f) \quad \mathcal{T}\text{-symmetry when } \theta = 0, \pi$ 

> Coupling  $\mathbb{Z}_N$  two-form gauge field *B* as the background gauge field,

$$S = -\frac{1}{2g^2} \int \operatorname{tr}\left[\left(\mathcal{F} - \mathbb{1}B\right) \wedge \left(\mathcal{F} - \mathbb{1}B\right)\right] + \frac{\theta}{8\pi^2} \int \operatorname{tr}\left[\left(\mathcal{F} - \mathbb{1}B\right) \wedge \left(\mathcal{F} - \mathbb{1}B\right)\right] + \frac{1}{2\pi} \int u \wedge \left(\operatorname{tr}\mathcal{F} - NB\right)$$

 $\succ$  " $\mathbb{Z}_N$  one-form gauge symmetry"+" $\mathcal{T}$ -symmetry when  $\theta = \pi$ "

 $\geq$  Respecting  $\mathbb{Z}_N$  one-form gauge symmetry,

$$Z[B] \xrightarrow{\mathcal{T}} Z[B] \exp\left[i\frac{-1+N+2p}{4\pi N}\int NB \wedge NB\right] \qquad 2\pi i \times (\text{fractional})$$

Our motivation is to understand in a completely regularized framework (lattice field theory).

### Principal Fiber Bundle

• Covering manifold by patch  $U_i$ , each patch has SU(N) gauge field  $a_i$ , matter field  $\phi_i$  in an irreducible representation  $\rho$ .

• 
$$g_{ij}$$
 at  $U_{ij} = U_i \cap U_j$   
 $a_j = g_{ij}^{-1} a_i g_{ij} - i g_{ij}^{-1} dg_{ij}$   
 $\phi_j = \rho(g_{ij}^{-1}) \phi_i$   
 $U_i \quad U_j$ 

transition function  $g_{ij}$ 

• Cocycle condition at  $U_{ijk} = U_i \cap U_j \cap U_k$ 

$$g_{ij}g_{jk}g_{ki} = 1$$



# $\mathbb{Z}_N$ One-form Gauge Symmetry and Fiber Bundle

• Especially for the adjoint representation, the cocycle condition can become relaxed.

$$g_{ij}g_{jk}g_{ki} = \exp\left(\frac{2\pi i}{N}n_{ijk}\right) \in \mathbb{Z}_N$$

 $\geq \{n_{ijk}\}$  has the gauge redundancy.

The transformation of the transition function is

$$g_{ij} \mapsto \exp\left(\frac{2\pi i}{N}\lambda_{ij}\right)g_{ij}$$

For the invariance of the cocycle condition,

$$n_{ijk} \mapsto n_{ijk} + (\delta\lambda)_{ijk}$$

$$(\delta\lambda)_{ijk} \equiv \lambda_{ij} - \lambda_{ik} + \lambda_{jk}$$

> This transformation is  $\mathbb{Z}_N$  one-form gauge transformation,  $\{n_{ijk}\}$  is  $\mathbb{Z}_N$  two-form gauge field.

# Fiber Bundle in $SU(N)/\mathbb{Z}_N$ gauge theory

By the principal fiber bundle in the SU(N)/Z<sub>N</sub> gauge theory, the topological charge can become fractional.
 ('t Hooft, Nucl. Phys. B 153 (1979), van Baal, Commun. Math. Phys. 85 (1982))



(new transition function)  $\sim \omega_{\mu} \times$  (ordinary transition function)

factor for fractionality

$$\overset{}{\times} Z[B] \xrightarrow{\mathcal{T}} Z[B] \exp\left[i\frac{-1+N+2p}{4\pi N}\int NB \wedge NB\right]$$
 2\pii \text{(fractional)}

# Fractional Topological Charge on the Lattice

- Above discussion about mixed 't Hooft anomaly and the fractional topological charge is in the continuum.
- > Want to understand in a completely regularized framework (lattice gauge theory)

d in the lattice SU(N) gauge theory

our paper

- Integer topological charge is formulated in the lattice SU(N) gauge theory (Lüscher, Commun. Math. Phys. 85 (1982))
- $\succ$  We formulated fractional topological charge in the lattice U(1) gauge theory.

Apply the simpler formulation of the integer topological charge in the lattice U(1) gauge theory (Fujiwara, Suzuki, Wu, arXiv:0001029)

12/07/22

#### Transition Function on the Lattice

Fractionality

(new transition function)  $\sim \omega_{\mu} \times (\text{ordinary transition function})$ 

• At  $x \in f(n, \mu)$ , constructing  $U(1)/\mathbb{Z}_q$  transition function,

 $v_{n,\mu}(x) = \omega_{\mu}(x)\check{v}_{n,\mu}(x) \quad \text{at } x \in f(n,\mu)$ 

 $\geq \omega_{\mu}$  is the factor for relaxing the cocycle condition,

$$\omega_{\mu}(x) \equiv \begin{cases} \exp\left(\frac{\pi i}{q} \sum_{\nu \neq \mu} \frac{z_{\mu\nu} x_{\nu}}{L}\right) & \text{for } x_{\mu} = 0 \mod L \\ 1 & \text{otherwise} \end{cases}$$

$$\succ z_{\mu\nu} \in \mathbb{Z}$$
 and  $z_{\mu\nu} = -z_{\nu\mu}$ 

KEK-TH 2022 Parallel Session B @ Online



### Cocycle Condition on the Lattice

 $v_{n,\mu}(x) = \omega_{\mu}(x)\check{v}_{n,\mu}(x) \quad \text{at } x \in f(n,\mu)$ 

• For the ordinary transition function  $\check{v}_{n,\mu}$ , the cocycle condition is

 $\check{v}_{n-\hat{\mu},\nu}(x)\check{v}_{n,\mu}(x)\check{v}_{n,\nu}(x)^{-1}\check{v}_{n-\hat{\nu},\mu}(x)^{-1} = 1$ 

lattice version of  $g_{ij}g_{jk}g_{ki} = 1$ 

• For the new transition function  $v_{n,\mu}$ , owing to  $\omega_{\mu}$ ,

$$v_{n-\hat{\mu},\nu}(x)v_{n,\mu}(x)v_{n,\nu}(x)^{-1}v_{n-\hat{\nu},\mu}(x)^{-1}$$

$$=\begin{cases} \exp\left(\frac{2\pi i}{q}z_{\mu\nu}\right) \in \mathbb{Z}_q & \text{for } x_{\mu} = x_{\nu} = 0 \mod L \\ 1 & \text{otherwise} \end{cases} \quad \textbf{Z}_q \text{ "relax"}$$

# $\mathbb{Z}_a$ One-form Global Symmetry on the Lattice

• The factor of fractionality  $\omega_{\mu}$  is related to the  $\mathbb{Z}_q$  one-form transform.

➤ Link variable

$$U(n,\mu) \to \exp\left(\frac{2\pi i}{q}z_{\mu}\right)U(n,\mu) \qquad n_{\mu} = 0$$
  
> Transition function  $\in \mathbb{Z}_{q}$ 

$$\check{v}_{n,\mu}(x) \rightarrow \begin{cases} \exp\left(\frac{2\pi i}{q}z_{\mu}\right)\check{v}_{n,\mu}(x) & \text{for } x_{\mu} = 1\\ \check{v}_{n,\mu}(x) & \text{otherwise} \end{cases}$$

Cocycle condition

$$\check{v}_{n-\hat{\nu},\mu}(x)\check{v}_{n,\nu}(x)\check{v}_{n,\mu}^{-1}(x)\check{v}_{n-\hat{\mu},\nu}^{-1}(x) = 1$$

YITP seminar @ Kyoto University



# $\mathbb{Z}_q$ One-form Gauge Symmetry on the Lattice

- The factor of fractionality  $\omega_{\mu}$  is related to the  $\mathbb{Z}_q$  one-form transform.



### Fractional Topological Charge on the Lattice

• In the continuum,

$$Q = \frac{1}{32\pi^2} \int_{T^4} \mathrm{d}^4 x \,\varepsilon_{\mu\nu\rho\sigma} F_{\mu\nu}(x) F_{\rho\sigma}(x)$$

• Topological charge is calculated by the transition function,

$$Q = -\frac{1}{8\pi^2} \sum_{n \in \Lambda} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \int \mathrm{d}^2 x \left[ v_{n,\mu}(x) \partial_\rho v_{n,\mu}(x)^{-1} \right] \left[ v_{n-\hat{\mu},\nu}(x)^{-1} \partial_\sigma v_{n-\hat{\mu},\nu}(x) \right]$$
 factor of fractionality

• For the new transition function  $v_n$  ...

• For the new transition function 
$$v_{n,\mu}$$
,  

$$Q = \frac{1}{8q^2} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma} + \frac{1}{8\pi q} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} \sum_{n_{\mu}=0} \check{F}_{\rho\sigma}(n)$$

$$(ross term)$$
Fractional!!  

$$+ \frac{1}{32\pi^2} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \check{F}_{\mu\nu}(n) \check{F}_{\rho\sigma}(n + \hat{\mu} + \hat{\nu})$$
integer  

$$12/07/22$$
KEK-TH 2022 Parallel Session B @ Online 13/15

### Mixed 't Hooft Anomaly

• A lattice action is

$$S \equiv \frac{1}{4g_0^2} \sum_n \sum_{\mu,\nu} \check{F}_{\mu\nu}(n) \check{F}_{\mu\nu}(n) + S_{\text{matter}} - iq\theta Q$$
  
By the Witten effect  
Hidaka, Hirono, Nitta, Tanizaki, Yokokura, arXiv:1903.06389  
Honda, Tanizaki, arXiv:2009.10183  
$$qQ = \frac{1}{8q} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma} + \mathbb{Z}$$

 $\checkmark$  invariant under the  $\mathbb{Z}_q$  one-form gauge transformation

 $\checkmark$  odd under the lattice  $\mathcal T$  -transformation.

> We discussed the mixed 't Hooft anomaly between the  $\mathbb{Z}_q$  one-form gauge symmetry and the  $\mathcal{T}$ -symmetry.

#### Mixed 't Hooft Anomaly

• Including a local counter term, under the T-transformation,  $e^{iS}$  is

$$e^{i\pi qQ}e^{-S_{\text{counter}}} \xrightarrow{\mathcal{T}} e^{-i\pi qQ}e^{+S_{\text{counter}}} = e^{-2i\pi qQ}e^{2S_{\text{counter}}}e^{i\pi qQ}e^{-S_{\text{counter}}}$$
$$= \exp\left[-\frac{2\pi i(4k+1)}{8q}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}z_{\rho\sigma}\right]e^{i\pi qQ}e^{-S_{\text{counter}}}$$
$$0, \pm 8, \pm 16, \cdots$$

- > The anomaly is canceled for  $4k + 1 = 0 \mod q$ .
- This is impossible for  $q \in 2\mathbb{Z}$ . possible for  $q \in 2\mathbb{Z} + 1$ .
- > This implies the mixed 't Hooft anomaly between the  $\mathbb{Z}_q$  one-form gauge symmetry and the  $\mathcal{T}$ -symmetry for  $q \in 2\mathbb{Z}$ .

### Conclusion and Future Work

- Conclusion
- $\succ$  We formulated the fractional topological charge on the lattice U(1) gauge theory.
- > Our construction provides the mixed 't Hooft anomaly between the  $\mathbb{Z}_q$  one-form gauge symmetry and the  $\mathcal{T}$ -symmetry for  $q \in 2\mathbb{Z}$ .
- Future work
- The formulation of the fractional topological charge on the lattice SU(N) gauge theory
- The formulation of the Witten effect on the lattice