Spontaneous CP breaking in 4D SU(N) gauge theory at $\theta = \pi$ and its restoration at finite temperature

Akira Matsumoto (RIKEN iTHEMS)

collaboration : Kohta Hatakeyama^(KEK), Mitsuaki Hirasawa^(INFN), Masazumi Honda^(YITP, iTHEMS), Jun Nishimura^(KEK, SOKENDAI), Atis Yosprakob^(Niigata U)

> @ KEK Theory workshop 2022 (online) December 7, 2022

Gauge theory with a theta term

 $\Rightarrow \theta$ term : topological nature of the gauge theory, nonperturbative

$$S_{\theta} = -i\theta Q = -\frac{i\theta}{32\pi^2} \int d^4x \,\epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}(F_{\mu\nu}F_{\rho\sigma}) \qquad Z = \int dA \,e^{-S_g + i\theta Q}$$

- topological charge : $Q \in \mathbb{Z}$
- periodicity : $\theta \rightarrow \theta + 2\pi$
- CP $(\theta \rightarrow -\theta)$ exists not only at $\theta = 0$ but also $\theta = \pi$
- Possible phase structures at $\theta = \pi$ are constrained by 't Hooft anomaly matching.

Prediction by 't Hooft anomaly matching

rightarrow 't Hooft anomaly matching for 4D SU(N) gauge theory \rightarrow constrain the phase structure at $\theta = \pi$

Phase structure of 4D SU(2) gauge theory

Possible (θ , T) phase diagrams for N=2

- We assume two phase transitions at $\theta = \pi$:
 - (1) CP is broken at low temperature $T < T_{CP}$

indication of CP breaking at T=0 by subvolume method [R. Kitano, R. Matsudo, N. Yamada, M. Yamazaki (2021)]

- (2) Z₂ is broken at high temperature T > T_{dec} (deconfinement)
 [D. J. Gross, R. D. Pisarski, L. G. Yaffe (1981)]
 [N. Weiss (1981)]
- constraint by the anomaly matching :

"CP cannot be restored in Z_2 symmetric phase" $\rightarrow T_{CP} \ge T_{dec}$

T_{dec} VS T_{CP}

rightarrow examples of possible (heta, T) phase diagram

Which diagram is realized for N=2?

Short summary

- Direct lattice simulation at $\theta = \pi$ is hard due to the sign problem.
- The crucial point of our work :

CP breaking/restoration can be probed by the change of topological charge distribution at $\theta = 0$ (no sign problem) !

- We find a sudden change of the distribution by measuring the topological susceptibility.
 - \rightarrow Our results suggest T_{CP} > T_{dec}

Identifying CP restoration

- Q is a CP odd operator
 - → If CP is spontaneously broken at $\theta = \pi$, $\langle Q \rangle$ is discontinuous there.

$$\Delta Q = |\langle Q \rangle_{\theta = \pi - \epsilon} - \langle Q \rangle_{\theta = \pi + \epsilon} | \begin{cases} > 0 & : \text{ CP broken} \\ = 0 & : \text{ CP restored} \end{cases}$$

- T_{CP} can be regarded as a temperature where $\Delta\,Q$ vanishes.
- Can we probe it without simulations at $\theta = \pi ? \rightarrow$ Yes!

$\langle Q \rangle$ and the topological charge distribution

• topological charge distribution at $\theta = 0$

$$\rho(q) = \frac{1}{Z_0} \int dU \,\delta(q-Q) e^{-S_g} = \frac{1}{Z_0} \int \frac{d\theta}{2\pi} \,e^{-i\theta q} Z_\theta$$

= Fourier transform of the partition function

$$Z_{\theta} = \int dU \, e^{-S_g + i\theta Q} = Z_0 \int dq \, e^{i\theta q} \rho(q)$$
$$\checkmark \quad \langle Q \rangle = -i \frac{\partial}{\partial \theta} \log Z_{\theta} = \frac{\int dq \, q e^{i\theta q} \rho(q)}{\int dq \, e^{i\theta q} \rho(q)}$$

 θ dependence of $\langle Q \rangle$ is completely determined by $\rho(q)$

• ΔQ depends on $\rho(q) \rightarrow \rho(q)$ changes suddenly at T_{CP}

Measuring the behavior of ρ (q)

- To see the T dependence of $\rho(q)$, we focus on the behavior of topological susceptibility $\chi_0 = \langle Q^2 \rangle_{\theta=0} / V$.
- We found that χ_0 changes suddenly at a finite T, which can be regarded as a transition of $\rho(q)$.
 - \rightarrow We identify this transition with the restoration of CP_($\theta = \pi$).

• We will show another viewpoint of the transition of $\rho(q)$ in terms of the topological charge at imaginary θ .

Lattice regularization

• gauge action : Wilson action

$$S_{\beta} = \frac{\beta}{2N} \sum_{n} \sum_{\mu \neq \nu} \operatorname{Tr} P_{n}^{\mu\nu} \qquad P_{n}^{\mu\nu} = U_{n,\mu} U_{n+\hat{\mu},\nu} U_{n+\hat{\nu},\mu}^{-1} U_{n,\nu}^{-1} \qquad \beta = \frac{4}{g^{2}}$$

- topological charge :
 - clover leaf definition[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]+ stout smearing[C. Morningstar, M. Peardon (2004)]

$$Q_{\text{clov}} = -\frac{1}{32\pi^2} \sum_{n} \frac{1}{16} \sum_{\mu,\nu,\rho,\sigma=1}^{4} \epsilon_{\mu\nu\rho\sigma} \text{Tr} \left(\bar{P}_n^{\mu\nu} \bar{P}_n^{\rho\sigma} \right)$$

$$\bar{P}_{n}^{\mu\nu} = P_{n}^{\mu\nu} - P_{n}^{-\mu\nu} - P_{n}^{\mu-\nu} + P_{n}^{-\mu-\nu}$$

Result of HMC at $\theta = 0$

<u>T dependence of $\chi_0 = \langle Q^2 \rangle_{\theta=0} / V$ </u>

• We found that the behavior of χ_0 changes suddenly at T/T_{dec($\theta = 0$) > 1.}

• We interpret it as the change of $\rho(q)$ which corresponds to the restoration of $CP_{(\theta = \pi)}$.

Finite volume effect

- We identify the peak position of $\partial \chi_0 / \partial T$ with T_{CP}. \rightarrow T_{CP} ~ 1.05 T_{dec($\theta = 0$)}
- The peak height grows $\sim V_s^{0.16} \rightarrow 2nd \text{ order transition or higher}$

Interpretation with imaginary θ

• $\langle Q \rangle / \chi_0 V$ at imaginary θ is sensitive to the change of $\rho(q)$ as well.

model	$\langle Q \rangle / \chi_0 V$ for θ	$\langle Q \rangle / \chi_0 V$ for $\theta = i \tilde{\theta}$	CP at $\theta = \pi$
instanton gas	$i \sin \theta$	$-\sinh ilde{ heta}$	restored
large N, low T	iθ	$- ilde{ heta}$	broken
$\begin{array}{l} \langle Q \rangle = \\ \frac{\int dq q e^{i\theta q} \rho(q)}{\int dq e^{i\theta q} \rho(q)} \end{array}$	$Q > / \chi V$ 3 2 1 0.2 0.4 0.6 0.8 1.0 θ / θ 0.3 0.8	$-/\chi V$ 40 30 22π 20 10 0.0 0.2 0.4 0.6 0.8	$\begin{array}{l} \langle Q \rangle = \\ \frac{\int dq q e^{-\tilde{\theta}q} \rho(q)}{\int dq e^{-\tilde{\theta}q} \rho(q)} \\ \hline \\ \hline \\ \hline \\ \hline \\ 1.0 \end{array} \end{array}$
difference of $\langle Q \rangle$ comes from the tail of $\rho(q)$ due to $e^{-\tilde{\theta}q}$			

Result of HMC at imaginary θ

imaginary θ dependence of $\langle Q \rangle / \chi_0 V$

- We measure $\langle Q \rangle / \chi_0 V$ at various (T, θ) .
- Transition from linear (large N, low T) behavior to sinh (instanton gas) is observed.
- $\langle Q \rangle / \chi_0 V$ can identify the difference of phase.

Result of HMC at imaginary θ

<u>T dependence of $\langle Q \rangle / \chi_0 V$ for the fixed θ </u>

- $\langle Q \rangle / \chi_0 V$ at imaginary θ has a jump at T=T_{CP}.
- Both of $\langle Q \rangle$ and $\chi_0 V$ contribute to this transition.

Conjectured phase diagram

- Our results indicates $T_{CP} \sim 1.05 T_{dec(\theta=0)}$.
- If $T_{dec(\theta = \pi)}$ is lower than $T_{dec(\theta = 0)}$ as expected in SU(3) case,

$$\rightarrow T_{CP} > T_{dec(\theta = 0)} > T_{dec(\theta = \pi)}$$

$$\frac{T_{\rm dec}(\theta)}{T_{\rm dec}(0)} \simeq 1 - R_2 \,\theta^2$$

cf.) R₂ ~ 0.018 for SU(3) [M. D'Elia, F. Negro (2013)] [N. Otake, N. Yamada (2022)]

Summary

- The CP breaking/restoration at $\theta = \pi$ can be seen as a sudden change of the tail of topological charge distribution at $\theta = 0$.
- This change can be observed by χ_0 (or $\langle Q \rangle / \chi_0 V$ at imaginary θ).
- We obtained $T_{CP} \sim 1.05 T_{dec(\theta = 0)}$. (Note that the sign problem is severest at $\theta = \pi$.)
- This is interesting from the viewpoint of the 't Hooft <u>anomaly matching</u> <u>condition</u> in 4D SU(N) gauge theory. $\rightarrow T_{CP} \ge T_{dec}$
- Our results suggest $T_{CP} > T_{dec}$ for SU(2) unlike large N result ($T_{CP} = T_{dec}$).
- A similar study for SU(3) is ongoing.

 $(T_{CP} = T_{dec(\theta = \pi)} < T_{dec(\theta = 0)}$ is expected for SU(3))

Thank you!