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1. Introduction

Monte-Carlo (MC) simulation...... An efficient method to have numerical integrations

Ex) path integral
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-> The phase ¢~™ % oscillates; convergence is exponentially slow

Sign problem : Obstacle to study on real-time dynamics, QCD with finite density and theta term, etc.



1. Introduction

To circumvent the sign problem...

. . [Alexandru-Basar-Bedaque, '15]
Generalized thimble method (GTM) [Alexandru-Basar-Bedaque-Ridgway-Warrington, "16]

Complexify variables & deform integral contour with the holomorphic gradient eq,.
Cf.) Picard-Lefschetz theory
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The deformed contour approaches -~~~
a set of steepest descent curves
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1. Introduction

Why expansive map? - N
- / 3(5%-)
- flow eq. for deviation dz; = z; — 2 : | —5=— = H 0z
% do Hessian )

‘ Roughly, exponential expansion with rates “singular values of 7 ”

Subtlety in GTM

* Expansion rates differ mode by mode (high-energy mode - large expansion rate)
m) Suitable region of flow time (to solving the sign prob. & Ergodicity prob.) also differ

* In the standard GTM, we move the sampling pt. on the original or deformed contour
with mode-independent step size



1. Introduction

Then, when we take the sampling with multimode...

[Alexandru-Basar-Bedaque, '15]

Case a) Samplmg point on the O”gmal contour [Alexandru-Basar-Bedaque-Ridgway-Warrington, "16]

Low-energy High-energy
mode . mode N

Flowed pt. going away...

Otherwise,

Strong
autocorrelation



1. Introduction

Then, when we take the sampling with multimode...

Case b) Sampling point on the deformed contour [Fukuma-Matsumoto, ’20]
Cf) [Fujii-Honda-Kato-Kikukawa-Komatsu-Sano, "13]

Note: a reference point and its update are required to compute the sampling pt.

Low-energy

High-energy
mode

mode

Severe fine-tune of updates for reference pt.



2. Optimizing the flow

* Express the singularvaluesof Has \{ < Ay < --- < Ay
The problematic hierarchy of the expansion modes is characterized by

AN

n(H) = N

Condition number (linear equation) or Stiffness ratio (differential equation)

* Inlocal theories, large 77 appears mainly due to the derivative in the kinetic term

- Typically, n(H) = O(1000) even with N = O(10) - Averaging the flow time (at least) in Case a)
is not so effective.

* In order to make the subtlety milder,
A) improve the numerical algorithm so that we can go with large 7]

B) modify the flow eq. to make 7] closetol «—— Our work



2. Optimizing the flow

Modified flow eq.
4 )
0z; oS B
—— = Ajr5—, Ajr(z, Z) : hermitian, positive-definite
80 azk “preconditioner”
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- The essential property of the original flow eq. is inherited: A — >0
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* Flow eq. for deviation : = AjHp102) l"‘(alAjk)ak_S(SZl +ec.

From interaction; small contribution to n in local theories

We can freely choose A,x(z,z), butfor the present purpose, it should be

* making n(AH) as small as possible
Trade-off
» calculable at small cost



2. Optimizing the flow

One choice: full optimization as to 7]

A= (HH) > wp n(AH)=1

Full preconditioner

~

Polar decomposition: H = KU (K :Hermitian, positive-semidefinite  [J : unitary)

>HH=H'H=K*, A=K ' n(AH)=nU)=1
N _/

(p

roof)

We have had a simulation with this choice for Case a),
And investigated basic properties Sampling pt. on the original contour



3. Result with full preconditioner

Set up
- Model: wavefunction of an anharmonic oscillator with Gaussian initial state
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- To move the sampling pt., we employ the backpropagating Hybrid Monte-Carlo
[Fujisawa-Nishimura-KS-Yosprakob, '21]

HMC ...... Update sampling pt. to distant place by “rolling down” the point with potential S.
Backpropagation ...... Fast calculation of the “force” to move the point for Case a); we solve the flow eq. backwardly.



3. Result with full preconditioner
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With the full preconditioner, we observed that the suitable regions of o,
where the sign prob. & Ergodicity prob. are resolved, are regulated among all the modes.



3. Result with full preconditioner

Autocorrelation

Between the samplings (9 and 4(¢+%) | the autocorrelation is defined as
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3. Result with full preconditioner

Fluctuation of Jacobian

In Case a), we have to include the Jacobian of the flow map in the observable.

— tend to fluctuate by orders of magnitude, causing an overlap problem.
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» |J| gets less fluctuating
— Overlap prob. is circumvented



3. Result with full preconditioner

Larger system, stronger coupling (trial phase)

N=20, A\=30, =4, a=0.3

Observable: momentum density

p(0) = antog () = 22558 (P) = [ b a(8) pl0)

Without preconditioner, it’s very hard to obtain a result
with a same-order precision in a realistic running time.

\ 4

The applicability of GTM is enlarged, indeed!

Curves: exact result obtained
by diagonalizing the
Hamiltonian




4. Summary and Future works

Summary
- We have discussed a subtlety in standard flow eq. in GTM, which comes from the hierarchy in the expansion rates.
This is more crucial when we move the sampling pt. on the original contour.

- We have proposed a modification on the flow eq. by a preconditioner, which reduces the higherarchy.

- We have demonstrated a simulation for a real-time anharmonic oscillator, and have confirmed regulated suitable
region of flowtime, small autocorrelation, small fluctuation of the Jacobian, enlarged applicability of GTM.

Future works
* Improvement on Case b), where we move the sampling pt. on the deformed contour?

Constraint eq. for updating parameters Reference pt.s Multiplier
Bf 8f - \ / o Normal force
J J @ 1a
—= € + —=0\" = —fj, file,A) = zj(x +€,0) — zj(v,0) — pjAs — A I}

O€g O\

Eqg. with huge condition number - reduced by a preconditioner

Or, world volume method [Fukuma-Matsumoto, '21, ...] (Prof. Fukuma’s talk) with large-cond.num.-tolerant algorism?

* Other choices of the preconditioners, faster at the cost of nz1 ?

- physical application such as quantum tunneling (Dr. Yosprakob’s talk), quantum cosmology (Prof. Nishimura’s talk)
Listen to them tomorrow!
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Why expansive map? - N
- / 3(5%-)
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Ex) Real time free particle 5= —i /dt
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Changing the variables: z=x+1iy, u=o24+y, v=2—y
ou 0%y ov 0%v
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Re

Time-reversal diffusion eq.

Cf) Turok, “Existence of real time quantum path integrals” ('22)



