The emergence of $(3+1)$－dimensional space－time in the type IIB matrix model

Kohta Hatakeyama（KEK）

In collaboration with Konstantinos N．Anagnostopoulos（Natl．Tech．Univ．of Athens）， Takehiro Azuma（Setsunan Univ．），Mitsuaki Hirasawa（INFN）， Jun Nishimura（KEK，SOKENDAI），Stratos Kovalkov Papadoudis（Natl．Tech．Univ．of Athens）， and Asato Tsuchiya（Shizuoka Univ．）

Anagnostopoulos－Azuma－KH－Hirasawa－Nishimura－Papadoudis－Tsuchiya，work in progress
＂KEK－TH 2022＂on December 8th， 2022

1. Introduction

To obtain the 4D space-time from superstring theory, which is a promising candidate of the unified theory including quantum gravity, non-perturbative effects of superstring theory are considered to be important.
-The type IIB matrix model [Ishibashi-Kawai-Kitazawa-Tsuchiya ('96)]
A non-perturbative formulation of superstring theory.
In this model, space-time does not exist a priori but emerges
dynamically from the degrees of freedom of matrices.

$$
\begin{aligned}
S & =-N \operatorname{Tr}\left(\frac{1}{4}\left[A^{\mu}, A^{\nu}\right]\left[A_{\mu}, A_{\nu}\right]+\frac{1}{2} \bar{\Psi} \Gamma^{\mu}\left[A_{\mu}, \Psi\right]\right) \\
& =S_{\mathrm{b}}+S_{\mathrm{f}}, S_{\mathrm{b}}=-\frac{N}{4} \operatorname{Tr}\left(\left[A^{\mu}, A^{\nu}\right]\left[A_{\mu}, A_{\nu}\right]\right), S_{\mathrm{f}}=-\frac{N}{2} \operatorname{Tr}\left(\bar{\Psi} \Gamma^{\mu}\left[A_{\mu}, \Psi\right]\right)
\end{aligned}
$$

Related talks by
Yamamori and Piensuk (Wed.) J. Nishimura (Thu.)

$$
\Gamma^{\mu}: \text { 10D Gamma matrices }
$$

$$
(\mu=0, \ldots, 9)
$$

$N \times N$ Hermitian matrices | $\boldsymbol{A}_{\boldsymbol{\mu}}:$ 10D Lorentz vector |
| :--- |
| $\mathbf{\Psi}:$ 10D Majorana-Weyl spinor |

under $\operatorname{SO}(9,1)$ transformation
space-time is extracted from the eigenvalue distribution of $\boldsymbol{A}_{\boldsymbol{\mu}}$.

Does real space-time emerge?

The type IIB matrix model [ishibashi-Kawai-Kitazawa-Tsuchiya ('96)]
Partition function: $Z=\int d A d \Psi e^{i\left(S_{\mathrm{b}}+S_{\mathrm{f}}\right)}=\int \underset{\text { complex } \rightarrow \text { sign problem! }}{d A e^{i S_{\mathrm{b}}} \operatorname{Pf} \mathcal{M}(A)}$
Definition of expectation values: $\langle\mathcal{O}\rangle=\frac{1}{Z} \int d A \mathcal{O} e^{i S_{\mathrm{b}}} \operatorname{Pf} \mathcal{M}(A)$
Even if A_{μ} are Hermitian, the expectation values of eigenvalues are complex in general. In the original model, complex phase of $\left\langle A_{0}\right\rangle \sim e^{-3 \pi i / 8}$ and that of $\left\langle A_{i}\right\rangle \sim e^{\pi i / 8}$.
\rightarrow Real space-time cannot be realized!

How does real space-time emerge in this model?

Classical solutions

Classical EOM for the type IIB matrix model: $\frac{\delta S}{\delta A_{\mu}}=\left[A^{\nu},\left[A_{\nu}, A_{\mu}\right]\right]=0$ All simultaneously diagonalizable \boldsymbol{A}_{μ} are classical solutions, so there is no expansion in general for such solutions.
In the previous work [KH-Matsumoto-Nishimura-Tsuchiya-Yosprakob ('19)], to implement the effects of the IR regularization required for the Lorentzian model, we added the quadratic term of \boldsymbol{A}_{μ} (mass term) $-\frac{1}{2} N \gamma\left[\operatorname{Tr}\left(A_{0}\right)^{2}-\operatorname{Tr}\left(A_{i}\right)^{2}\right]$. Classical EOM with mass term: $\frac{\boldsymbol{\delta} \boldsymbol{S}}{\boldsymbol{\delta} \boldsymbol{A}_{\mu}}=\left[\boldsymbol{A}^{\nu},\left[\boldsymbol{A}_{\nu}, \boldsymbol{A}_{\mu}\right]\right]-\gamma \boldsymbol{A}_{\mu}=\mathbf{0}$

- $\gamma>0$: classical solutions with an expanding behavior

\leftarrow Classical solution for only 3d space expands. ※Dimensionality of expanding space is arbitrary. But not for $\gamma<0$!

We introduce the same mass term when we perform simulations of this model.

Contents

1. Introduction

2. Complex Langevin method (CLM)

3. Results

4. Conclusion and outlook

2. Complex Langevin method (CLM)

We perform numerical simulations based on the complex Langevin method (CLM) to overcome the sign problem.

$$
\boldsymbol{Z}=\int \boldsymbol{d} \boldsymbol{x} \boldsymbol{w}(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R} \longrightarrow \quad \underset{\text { complex-valued function }}{ } \quad \text { [Parisi ('83), Klauder ('84)] }
$$

Complex Langevin equation (t_{L} : Langevin time)

$$
\frac{d z_{k}}{d t_{\mathrm{L}}}=\frac{1}{\underset{w}{w} \frac{\partial w}{\partial z_{k}}+\underset{\text { Gaussian noise, real }}{\eta_{k}\left(t_{\mathrm{L}}\right)} P\left(\eta_{k}\left(t_{\mathrm{L}}\right)\right) \propto \exp \left(-\frac{1}{4} \int d t_{\mathrm{L}} \sum_{k}\left[\eta_{k}\left(t_{\mathrm{L}}\right)\right]^{2}\right) .}
$$

- Necessary and sufficient condition to justify the CLM [Nagata-Nishimura-Shimasaki ('16)]
The probability distribution of the drift term should be exponentially suppressed.

Application of CLM to the type IIB matrix model

- Order of eigenvalues of $\boldsymbol{A}_{\mathbf{0}}\left(\boldsymbol{\alpha}_{\boldsymbol{i}}\right)$ [Nishimura-Tsuchiya ('19)]

$$
A_{0}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{N}\right)
$$

$$
\alpha_{1}<\alpha_{2}<\cdots<\alpha_{N} \longmapsto \frac{\alpha_{1}=0, \alpha_{2}=e^{\tau_{1}}, \alpha_{3}=e^{\tau_{1}}+e^{\tau_{2}}, \ldots, \alpha_{N}=\sum_{k=1}^{N-1} e^{\tau_{k}},{ }^{\text {Chift symmetry }}}{}
$$

Complexify variables
$\tau_{k} \in \mathbb{R}$

Hermitian matrices: $\boldsymbol{A}_{\boldsymbol{i}} \in \mathrm{SU}(\boldsymbol{N})$$\Rightarrow$| $\tau_{k} \in \mathbb{C}$ |
| :---: |
| General complex matrices: $\boldsymbol{A}_{\boldsymbol{i}} \in \mathrm{GL}(\boldsymbol{N}, \mathbb{C})$ |

- Complex Langevin equations $\boldsymbol{t}_{\mathrm{L}}$: Langevin time

$$
\begin{gathered}
\frac{d \tau_{k}}{d t_{\mathrm{L}}}=-\frac{\partial S_{\mathrm{eff}}}{\partial \tau_{k}}+\eta_{k}\left(t_{\mathrm{L}}\right) \\
\left.\begin{array}{ll}
\left.\frac{d\left(A_{i}\right)_{k l}}{d t_{\mathrm{L}}}=-\frac{\partial S_{\mathrm{eff}}}{\partial\left(\boldsymbol{A}_{i}\right)_{l k}}+\left(\eta_{\mathrm{L}}\right)\right) \propto \exp \left(-\frac{1}{4} \int d t_{\mathrm{L}} \sum_{k l}\left[\eta_{k}\left(t_{\mathrm{L}}\right)\right]^{2}\right) & \mathrm{P}\left(\eta_{i}\left(t_{\mathrm{L}}\right)\right) \propto \exp \left(-\frac{1}{4} \int d t_{\mathrm{L}} \sum_{i} \operatorname{Tr}\left[\eta_{i}\left(t_{\mathrm{L}}\right)\right]^{2}\right)
\end{array}\right\} \text { Gaussian noise } \\
S_{\mathrm{eff}}=-\frac{i}{4} N\left(2 \operatorname{Tr}\left[A_{0}, A_{i}\right]^{2}-\operatorname{Tr}\left[A_{i}, A_{j}\right]^{2}\right)-\frac{i}{2} N \gamma\left(\operatorname{Tr}\left(A_{0}\right)^{2}-\operatorname{Tr}\left(A_{i}\right)^{2}\right)-2 \log \Delta(\alpha)-\sum_{k=1}^{N-1} \tau_{k}-\log \operatorname{Pf} \mathcal{M}(A), \Delta(\alpha)=\prod_{k<l}^{N}\left(\alpha_{k}-\alpha_{l}\right) \\
\hline
\end{gathered}
$$

Some tricks to make the CLM work

Singular drift problem

$$
Z=\int d A e^{i S_{\mathrm{b}}} \operatorname{Pf} \mathcal{M}(A)
$$

\mathcal{M} that appears in $\operatorname{Pf} \mathcal{M}$ has eigenvalues accumulating near zero, which causes the singular drift problem. Due to this problem, the CLM fails. We introduce a deformation term in fermionic action to avoid the problem.
$S_{\mathrm{f}}=-\frac{N}{2} \operatorname{Tr}\left(\bar{\Psi}_{\alpha}\left(\Gamma^{\mu}\right)_{\alpha \beta}\left[A_{\mu}, \Psi_{\beta}\right]+i m_{\mathrm{f}} \bar{\Psi}_{\alpha}\left(\Gamma_{7} \Gamma_{8}^{\dagger} \Gamma_{9}\right)_{\alpha \beta} \Psi_{\beta}\right)$
$\boldsymbol{m}_{\mathrm{f}}$: deformation parameter $\left\{\begin{array}{l}\boldsymbol{m}_{\mathrm{f}} \rightarrow \infty \\ m_{\mathrm{f}} \rightarrow 0\end{array} \quad \begin{array}{l}\text { : } \begin{array}{l}\text { bosonic } \\ \text { (Due to decoupling of fermionic degrees of freedom) }\end{array} \\ \text { SUSY }\end{array}\right.$
Stabilization
Cf.) [Attanasio-Jäger ('18)] : dynamical stabilization in CL simulation of QCD
To stabilize the CLM, $\boldsymbol{A}_{\boldsymbol{i}} \rightarrow \frac{1}{1+\eta}\left(\boldsymbol{A}_{\boldsymbol{i}}+\eta \boldsymbol{A}_{i}^{\dagger}\right)$ after each Langevin step
$\begin{cases}\boldsymbol{\eta}=0: \text { do nothing } & \text { Here, } \boldsymbol{\eta}=\mathbf{0 . 0 1} \\ \boldsymbol{\eta}=1: \text { Hermitianize } & \text { ※Justifiable when dominant configurations are close to Hermitian. }\end{cases}$

How to determine whether time and space are real

- Distribution of $\boldsymbol{\alpha}_{i}$ (eigenvalues of \boldsymbol{A}_{0}) $\boldsymbol{\Delta}\left\langle\alpha_{i}\right\rangle \equiv\left\langle\alpha_{i+1}\right\rangle-\left\langle\alpha_{i}\right\rangle \propto e^{i \theta_{t}}$

Definition of time: $\bar{\alpha}_{k}=\frac{1}{n} \sum_{i=1}^{n} \alpha_{k+i} \in \mathbb{C}, t_{\rho}=\sum_{k=1}^{\rho}\left|\bar{\alpha}_{k+1}-\bar{\alpha}_{k}\right|$
$\boldsymbol{\theta}_{\mathbf{t}}=0$: real time
$A_{\mu} \rightarrow U A_{\mu} U^{\dagger}, U$: unitary matrix diagonalizing A_{0}

- $\theta_{\mathrm{S}}(t) \quad \theta_{\mathrm{S}}(t)=0$: real space $\quad R^{2}(t)=\left\langle\frac{1}{n} \operatorname{tr}\left(\bar{A}_{i}(t)\right)^{2}\right\rangle=e^{2 i \theta_{\mathrm{s}}(t)}\left|R^{2}(t)\right|$
- $\boldsymbol{T}_{i j}(t)$: order parameter of the SSB ($\left|\boldsymbol{R}^{2}(\boldsymbol{t})\right|$: extent of space)

Complex phase of time

Band-diagonal structure

$$
\mathcal{A}_{p q}=\frac{1}{9} \sum_{i=1}^{9}\left|\left(A_{i}\right)_{p q}\right|^{2} \quad N=48, n=16, \gamma=4, m_{\mathrm{f}}=3.5, \eta=0.01
$$

※This structure appears when the space expands.
Locality of time is ensured by the band-diagonal structure. \rightarrow One can read off the time evolution.

Complex phase of space
$N=48, n=16, \gamma=4, m_{\mathrm{f}}=3.5, \eta=0.01 \quad R^{2}(t)=e^{2 i \theta_{\mathrm{s}}(t)}\left|R^{2}(t)\right|$

Almost real space appears.
$\theta_{\mathrm{s}}(t) \sim 0$
For $\gamma=\mathbf{0}$,
$\theta_{\mathrm{s}}(t)=\pi / 8$, which corresponds to complex phase of $\left\langle A_{i}\right\rangle \sim e^{\pi i / 8}$.

SSB of SO(9) rotational symmetry

4. Conclusion

\checkmark We perform numerical simulations of the type IIB matrix model, which is a candidate for the non-perturbative formulation of superstring theory by using the complex Langevin method (CLM) to overcome the sign problem. We add the deformation term (coefficient: $\boldsymbol{m}_{\mathrm{f}}$) in the fermionic action to avoid the failure of the CLM.
\bullet In the original model, $\left\langle\boldsymbol{A}_{\mu}\right\rangle$ are complex. \rightarrow Space-time cannot be real!

- We introduce the mass term (coefficient: γ) to realize the real space-time.

By simulating at $N=48$, for $\gamma=4, m_{\mathrm{f}}=3.5$ we find that

- Time: approaching real compared with the $\gamma=0$ case
- Space: real, 3d expanding space, band-diagonal structure

Results shown in this talk are natural from the viewpoint of $Z=\int d A e^{i S_{\mathrm{E}}(A)} \operatorname{Pf} \mathcal{M}_{\mathrm{E}}(\boldsymbol{A})$, where $\boldsymbol{A}_{0}=-i \boldsymbol{A}_{\mathbf{1 0}}$. However, the distribution of $\left\langle\boldsymbol{\alpha}_{i}\right\rangle$ shows some departure from being vertical unlike what is suggested from $\boldsymbol{A}_{\mathbf{0}}=-\boldsymbol{i} \boldsymbol{A}_{\mathbf{1 0}}$.

4. Outlook

After taking the $N \rightarrow \infty$ limit, we should take the $\gamma \rightarrow 0$ limit.

Now, simulations with larger N, smaller γ and m_{f} are running.

Lorentz-invariant mass term

$$
\begin{aligned}
& \begin{array}{ll}
S_{\mathrm{b}}=-\frac{1}{4} N \boldsymbol{N}\left[2 \operatorname{Tr}\left(F_{0 i}\right)^{2}-\operatorname{Tr}\left(\boldsymbol{F}_{i j}\right)^{2}\right]-\frac{1}{2} N \gamma\left[\operatorname{Tr}\left(A_{0}\right)^{2}-\operatorname{Tr}\left(A_{i}\right)^{2}\right] & \beta=1 /\left(g^{2} N\right), F_{\mu \nu}=i\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right] \\
\beta>0, \gamma>0
\end{array} \\
& A_{0}=e^{-i \frac{3 \pi}{8} u} \tilde{A}_{0}, A_{i}=e^{i \frac{\pi}{8} u} \tilde{A}_{i}\left(\tilde{A}_{\mu}: \text { Hermitian }\right) \\
& \int d A e^{i S_{\mathrm{b}}}=\int d \tilde{A} e^{-\tilde{S}_{\mathrm{b}}} \\
& \text { Real part is positive. } \\
& \tilde{S}_{\mathrm{b}}(\tilde{A})=\frac{1}{4} \boldsymbol{N} \boldsymbol{\beta}\left[2 e^{i \frac{\pi}{2}(1-u)} \operatorname{Tr}\left(\tilde{F}_{\mathbf{0} i}\right)^{2}+e^{-i \frac{\pi}{2}(1-u)} \operatorname{Tr}\left(\tilde{F}_{i j}\right)^{2}\right] \quad \text { Real part is negative. } \\
& \text { For } \mathbf{0}<\boldsymbol{u} \leq \mathbf{1} \\
& +\frac{1}{2} N \gamma\left[e^{\left.-i \frac{\pi}{2}\left(1+\frac{3 u}{2}\right) \operatorname{Tr}\left(\tilde{A}_{0}\right)^{2}+e^{i \frac{\pi}{2}\left(1+\frac{u}{2}\right)} \operatorname{Tr}\left(\tilde{A}_{i}\right)^{2}\right]}\right. \\
& \text { the integration co }
\end{aligned}
$$

In this case, the equivalence to the Euclidean model is lost!

Cf) Classical solutions in the Lorentzian type IIB matrix model [KH-Matsumoto-Nishimura-Tsuchiya-Yosprakob ('19)]
The same mass term was used to obtain classical solutions of the Lorentzian type IIB matrix model with expanding behavior:

$$
\left[A^{\nu},\left[A_{\nu}, A_{\mu}\right]\right]-\gamma A_{\mu}=0
$$

If we switch the sign here, we do not obtain such classical solutions with the nice behavior.

Complex phase of time

$N=22, n=4, m_{\mathrm{f}}=1.5, \eta=0.01$
$\bar{\alpha}_{k}=\frac{1}{n} \sum_{i=1}^{n} \alpha_{k+i} \in \mathbb{C}, t_{\rho}=\sum_{k=1}^{\rho}\left|\bar{\alpha}_{k+1}-\bar{\alpha}_{k}\right|$
$\Delta\left\langle\alpha_{i}\right\rangle \equiv\left\langle\alpha_{i+1}\right\rangle-\left\langle\alpha_{i}\right\rangle \propto e^{i \theta_{t}}$

- $\gamma=0$

Complex phase of $\left\langle A_{0}\right\rangle \sim e^{-3 \pi i / 8}$ Corresponds to the dashed line $1^{\text {st }}$ order phase transition (?)

- $\gamma=6$

Real time emerges at late times. (Real-time phase)

Band-diagonal structure

※This structure appears when the space expands.
Locality of time is ensured by the band-diagonal structure. \rightarrow One can read off the time evolution.

Complex phase of space and extent of space

At late times, expanding real space emerges.

SSB of SO(9) rotational symmetry

