Bounds on expectation values in Quantum mechanics

KEK Theory Workshop 2022
(Dec. 9 2022)

Takeshi Morita (Shizuoka University)

Ref.
2208.09370

TM

Introduction: 1dim non-relativistic system

Range of possible particle motion
\rightarrow Determined by Energy Conservation

Range of possible particle motion

$$
\rightarrow ? ?
$$

- (Correct but) Useless answer

$$
-\infty \leq x \leq+\infty
$$

- Better answer

$$
x_{1} \leq\langle x\rangle \leq x_{2}, \quad E=\langle H\rangle
$$

Q. How to compute x_{1}, x_{2} ?

Introduction: 1dim non-relativistic system

Range of possible particle motion
\rightarrow Determined by Energy Conservation
x_{1}, x_{2} must depend on the particle state. But universal bounds that are independent of states must exist.
\rightarrow We seek these universal bounds.

$$
\text { cf. }\left\langle\Delta x^{2}\right\rangle\left\langle\Delta p^{2}\right\rangle \geq \frac{\hbar^{2}}{4}
$$

Introduction: 1dim non-relativistic system

Range of possible particle motion
\rightarrow Determined by Energy Conservation
x_{1}, x_{2} must depend on the particle state. But universal bounds that are independent of states must exist.
\rightarrow We seek these universal bounds.

$$
\text { cf. }\left\langle\Delta x^{2}\right\rangle\left\langle\Delta p^{2}\right\rangle \geq \frac{\hbar^{2}}{4}
$$

Range of possible particle motion

$$
\rightarrow ? ?
$$

- (Correct but) Useless answer

$$
-\infty \leq x \leq+\infty
$$

- Better answer
$\rightarrow x_{1} \leq\langle x\rangle \leq x_{2}, \quad E=\langle H\rangle$
Q. How to compute x_{1}, x_{2} ?
A. Uncertainty Relation and its generalization (\fallingdotseq Bootstrap method) Han-Hartnoll-Kruthoff (2020)

Introduction: 1dim non-relativistic system

quantum

x_{1}, x_{2} must depend on the particle state. But universal bounds that are independent of states must exist.
\rightarrow We seek these universal bounds.

$$
\text { cf. }\left\langle\Delta x^{2}\right\rangle\left\langle\Delta p^{2}\right\rangle \geq \frac{\hbar^{2}}{4}
$$

- Better answer

$$
\rightarrow x_{1} \leq\langle x\rangle \leq x_{2}, \quad E=\langle H\rangle
$$

Q. How to compute x_{1}, x_{2} ?
A. Uncertainty Relation and its generalization (\fallingdotseq Bootstrap method) Han-Hartnoll-Kruthoff (2020)

1. Introduction

2. Harmonic Oscillator

\rightarrow Uncertainty Relation works.
3. General potential
\rightarrow Numerical bootstrap method works.
(Bootstrap = a generalized uncertainty relation)

- Comment on Ground State

4. Summary

2. Harmonic Oscillator

E

$$
H=\frac{1}{2} p^{2}+\frac{1}{2} x^{2} .
$$

QM We use $E=\langle H\rangle$.
classical

$$
-\sqrt{2 E} \leq x \leq \sqrt{2 E}
$$

$$
\begin{gathered}
E=\frac{1}{2}\left\langle p^{2}\right\rangle+\frac{1}{2}\left\langle x^{2}\right\rangle=\frac{1}{2}\left(\left\langle\Delta p^{2}\right\rangle+\langle p\rangle^{2}\right)+\frac{1}{2}\left(\left\langle\Delta x^{2}\right\rangle+\langle x\rangle^{2}\right) \text { uncertainty relation } \\
\Rightarrow\langle x\rangle^{\downarrow}+\langle p\rangle^{2}=2 E-\left(\left\langle\Delta x^{2}\right\rangle+\left\langle\Delta p^{2}\right\rangle\right) \leq 2 E-2 \sqrt{\left\langle\Delta x^{2}\right\rangle\left\langle\Delta p^{2}\right\rangle} \leq 2 E-\hbar . \\
\text { arithmetic mean } \\
\quad-\sqrt{2(E-\hbar / 2)} \leq\langle x\rangle \leq \sqrt{2(E-\hbar / 2)}
\end{gathered}
$$

\rightarrow This result is equivalent to the classical result with $E \rightarrow E-\underline{\hbar / 2}$.
zero point energy
\rightarrow The classical result is corrected by the zero point energy.
\checkmark It is not difficult to show that this bound is saturated by coherent states.

2. Harmonic Oscillator

\rightarrow This result is equivalent to the classical result with $E \rightarrow E-\underline{\hbar / 2}$.
zero point energy
\rightarrow The classical result is corrected by the zero point energy.
\checkmark It is not difficult to show that this bound is saturated by coherent states.

1. Introduction

2. Harmonic Oscillator

\rightarrow Uncertainty Relation works.

3. General potential

\rightarrow Numerical bootstrap method works.
(Bootstrap = a generalized uncertainty relation)

- Comment on Ground State

4. Summary

3. General Potential

$$
\begin{gathered}
H=\frac{1}{2} p^{2}+V(x) \\
\text { ex) } V(x)=x^{4}
\end{gathered}
$$

\rightarrow Uncertainty Relation is not enough. $\left\langle\Delta x^{2}\right\rangle\left\langle\Delta p^{2}\right\rangle \geq \frac{\hbar^{2}}{4} \longleftrightarrow$? $\left\langle x^{4}\right\rangle$
\rightarrow Even if we know all eigen states, it is hard to obtain the bound for $\langle x\rangle$.
\rightarrow We may need a generalization of the uncertainty relation involving higher order moment observables $\left\{\left\langle x^{m}\right\rangle,\left\langle p^{n}\right\rangle,\left\langle p^{k} x^{l}\right\rangle\right\}$.
\rightarrow Bootstrap method Han-Hartnoll-Kruthoff (2020)

3. General Potential

Bootstrap method
O : Operators
ex) $O=x^{m} p^{n}$

If $\left\langle O^{\dagger} O\right\rangle \geq 0$ is satisfied for ${ }^{\forall} O$, we obtain the following relation:

$$
\begin{aligned}
& \quad \tilde{O}=\sum_{i=1}^{K} c_{i} O_{i}\left\{\begin{array}{lr}
\left\{O_{i}\right\}: \text { a set of } K \text { operators } & (i=1, \cdots, K) \\
\left\{c_{i}\right\}: \text { constants } \\
K: \text { an integer } \sim \text { cut off } & \text { ex) }\left\{O_{i}\right\}=\underbrace{\{x, p, x p, \cdots\}}_{K}
\end{array}\right. \\
& \Leftrightarrow \\
& \Leftrightarrow \\
& \\
& \left.\quad\left\langle\tilde{O}^{\dagger} \tilde{O}\right\rangle=\vec{c}^{\dagger} M \vec{c} \geq 0 \quad \text { for } \forall c_{i}\right\} \\
& \left.\forall c_{1}, c_{2}, \cdots, c_{K}\right)
\end{aligned}
$$

Eigenvalues of M are all non-negative.

$$
M \succeq 0
$$

$\left\langle O_{i}^{\dagger} O_{j}\right\rangle$ is highly constrained!

3. General Potential

Bootstrap method and Uncertainty Relation
$M:=\left(\begin{array}{cc}\ddots & \vdots \\ \cdots & \left\langle O_{i}^{\dagger} O_{j}\right\rangle \cdots \\ \vdots\end{array}\right] M \succeq 0 \rightarrow$ A Generalization of Uncertainty Relation
(Proof) $\tilde{O}=c_{0} 1+c_{1} x+c_{2} p$

$$
M=\left(\begin{array}{ccc}
1 & \langle x\rangle & \langle p\rangle \\
\langle x\rangle & \left\langle x^{2}\right\rangle & \langle x p\rangle \\
\langle p\rangle & \langle p x\rangle & \left\langle p^{2}\right\rangle
\end{array}\right) \quad \xrightarrow{M} 0
$$

Uncertainty relation

$$
\left\langle\Delta x^{2}\right\rangle\left\langle\Delta p^{2}\right\rangle \geq \frac{\hbar^{2}}{4} \quad \text { for } \quad{ }^{\forall}| \rangle
$$

\rightarrow If we take $\tilde{O}=c_{0} 1+c_{1} x+c_{2} p+c_{3} x^{2}+c_{4} p^{2}+\cdots, \quad M \succeq 0$ provides stronger constraints involving higher order moment $x^{m} p^{n}$.
$\rightarrow M \succeq 0$ is a generalized version of uncertainty relation.

3. General Potential

Example: Anharmonic oscillator $H=\frac{1}{2} p^{2}+\frac{1}{2} x^{2}+\frac{1}{4} x^{4}$
$M \succeq 0, E=\langle H\rangle=\frac{1}{2}\left\langle p^{2}\right\rangle+\frac{1}{2}\left\langle x^{2}\right\rangle+\frac{1}{4}\left\langle x^{4}\right\rangle$
Find the maximum and minimum of $\langle x\rangle$.

$$
\mathcal{M}=\left(\begin{array}{cccc}
1 & \langle x\rangle & \langle p\rangle & \cdots \\
\langle x\rangle & \left\langle x^{2}\right\rangle & \langle x p\rangle & \cdots \\
\langle p\rangle & \langle p x\rangle & \left\langle p^{2}\right\rangle & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

\rightarrow "Linear Programming" (solvable)

Larger M provide stronger bounds.

3. General Potential

Example: Double well potential

$$
H=\frac{1}{2} p^{2}-5 x^{2}+\frac{1}{4} x^{4} .
$$

$\cdots \cdots-\cdots-\cdots$	classical
	$\left(K_{x}, K_{p}\right)=(2,2)$
-	$\left(K_{x}, K_{p}\right)=(3,3)$
\cdots	$\left(K_{x}, K_{p}\right)=(5,5) \downarrow$ size of M
eigenstate	

The conditions $E=\langle H\rangle$ and $M \succeq 0$ are strong enough to obtain the bounds on $\langle x\rangle$.

3. General Potential

\star Other observables

Bounds on $\langle x\rangle \rightarrow$ Bounds on $\left\langle x^{m} p^{n}\right\rangle \quad$ Easy!
Example 1) $\left\langle x^{2}\right\rangle$ in Harmonic Oscillator

Example 2) $\langle p\rangle$

$$
H=\frac{1}{2} p^{2}+V(x) . \quad \rightarrow \quad|\langle p\rangle| \leq p_{*}:=\sqrt{2\left(E-E_{0}\right)} \quad\left\{\begin{array}{c}
E_{0}: \text { ground energy } \\
|0\rangle: \text { ground state }
\end{array}\right.
$$

3. General Potential

\star Uncertainty Relation \rightarrow Ground state

$$
H=\frac{1}{2} p^{2}+\frac{1}{2} x^{2}+\frac{1}{4} x^{4} \quad H=\frac{1}{2} p^{2}-5 x^{2}+\frac{1}{4} x^{4}
$$

$$
M \succeq 0 \rightarrow \text { Ground State }
$$

Summary

Summary

Determined by Energy Conservation

classical
$x_{1} \leq\langle x\rangle \leq x_{2}, \quad E=\langle H\rangle$
Uncertainty relation $(\fallingdotseq$ Bootstrap $)$

\checkmark Novel aspects of quantum mechanics: Uncertainty relations, Coherent states, Ground states.
\checkmark Uncertainty relation (bootstrap) \rightarrow Ground states.
Issues
\checkmark Bosons and Fermions \rightarrow Obtained bounds are weak.

Future directions

\checkmark Bounds for fixed charges, angular momentum and so on.
\checkmark Connection to other bounds in QM (chaos bound, viscosity bound, etc.)
\checkmark Application to other statistical models.

