Bounds on expectation values in Quantum mechanics

KEK Theory Workshop 2022 (Dec. 9 2022)

Takeshi Morita (Shizuoka University)

Ref.

2208.09370

ΤM

- 1. Introduction
- 2. Harmonic Oscillator

 \rightarrow Uncertainty Relation works.

3. General potential

 \rightarrow Numerical bootstrap method works.

(Bootstrap = a generalized uncertainty relation)

- Comment on Ground State
- 4. Summary

$$-\sqrt{2(E-\hbar/2)} \le \langle x \rangle \le \sqrt{2(E-\hbar/2)}$$

 \rightarrow This result is equivalent to the classical result with $E \rightarrow E - \frac{\hbar/2}{2}$. zero point energy

 \rightarrow The classical result is corrected by the zero point energy.

 \checkmark It is not difficult to show that this bound is saturated by coherent states.

zero point energy

 \rightarrow The classical result is corrected by the zero point energy.

 \checkmark It is not difficult to show that this bound is saturated by coherent states.

1. Introduction

2. Harmonic Oscillator

 \rightarrow Uncertainty Relation works.

3. General potential

 \rightarrow Numerical bootstrap method works.

(Bootstrap = a generalized uncertainty relation)

- Comment on Ground State
- 4. Summary

- → Uncertainty Relation is not enough. $\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \ge \frac{\hbar^2}{4} \xleftarrow{?} \langle x^4 \rangle$
- \rightarrow Even if we know all eigen states, it is hard to obtain the bound for $\langle x \rangle$.
- → We may need a generalization of the uncertainty relation involving higher order moment observables $\{\langle x^m \rangle, \langle p^n \rangle, \langle p^k x^l \rangle\}$.
- → Bootstrap method Han-Hartnoll-Kruthoff (2020)

Bootstrap method

$$O: \text{Operators}$$
 ex) $O = x^m p^n$

If $\langle O^{\dagger}O \rangle \geq 0$ is satisfied for $\forall O$, we obtain the following relation:

$$\tilde{O} = \sum_{i=1}^{K} c_i O_i \qquad \begin{cases} \{O_i\} : \text{a set of } K \text{ operators } (i = 1, \cdots, K) \\ \{c_i\} : \text{ constants } \\ K : \text{ an integer } \sim \text{ cut off} \end{cases} \text{ ex) } \{O_i\} = \{x, p, xp, \cdots\} \\ K \\ \Leftrightarrow \langle \tilde{O}^{\dagger} \tilde{O} \rangle = \vec{c}^{\dagger} M \vec{c} \ge 0 \quad \text{ for } \forall \{c_i\} \end{cases}$$

$$\begin{cases} \vec{c}^T = (c_1, c_2, \cdots, c_K) \\ \vdots \\ M := \begin{pmatrix} \ddots & \vdots \\ \cdots & \langle O_i^{\dagger} O_j \rangle \cdots \\ \vdots \\ K \times K \text{ matrix} \end{cases}$$
Eigenvalues of M are all non-negative.

$$M \succeq 0$$

$$\langle O_i^{\dagger} O_j \rangle \text{ is highly constrained!}$$
Han et al use it and obtain energy eigenstate.

(. .

TM (2022)

Bootstrap method and Uncertainty Relation

$$M := \left[\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdots & \langle O_i^{\dagger} O_j \rangle \cdots \\ \vdots & \cdot \end{array} \right] \quad M \succeq 0 \ \Rightarrow \text{A Generalization of Uncertainty Relation}$$

(Proof)
$$\tilde{O} = c_0 1 + c_1 x + c_2 p$$

 $M = \begin{pmatrix} 1 & \langle x \rangle & \langle p \rangle \\ \langle x \rangle & \langle x^2 \rangle & \langle xp \rangle \\ \langle p \rangle & \langle px \rangle & \langle p^2 \rangle \end{pmatrix}$
 $\xrightarrow{M \succeq 0}$
 $M \succeq 0$
 $\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \ge \frac{\hbar^2}{4}$ for $\forall | \rangle$

 \rightarrow If we take $\tilde{O} = c_0 1 + c_1 x + c_2 p + c_3 x^2 + c_4 p^2 + \cdots$, $M \succeq 0$ provides

stronger constraints involving higher order moment $x^m p^n$.

 $\rightarrow M \succeq 0$ is a generalized version of uncertainty relation.

Example: Anharmonic oscillator

$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4$$

$$M \succeq 0, \ E = \langle H \rangle = \frac{1}{2} \langle p^2 \rangle + \frac{1}{2} \langle x^2 \rangle + \frac{1}{4} \langle x^4 \rangle$$

Find the maximum and minimum of $\langle x
angle$.

→ "Linear Programming" (solvable)

$$\mathcal{M} = \begin{pmatrix} 1 & \langle x \rangle & \langle p \rangle & \cdots \\ \langle x \rangle & \langle x^2 \rangle & \langle xp \rangle & \cdots \\ \langle p \rangle & \langle px \rangle & \langle p^2 \rangle & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

TM (2022)

Larger *M* provide stronger bounds.

<u>3. General Potential</u>

Example: Double well potential

$$H = \frac{1}{2}p^2 - 5x^2 + \frac{1}{4}x^4.$$

The conditions $E = \langle H \rangle$ and $M \succeq 0$ are strong enough to obtain the bounds on $\langle x \rangle$.

TM (2022)

★ Other observables

Bounds on $\langle x \rangle \rightarrow$ Bounds on $\langle x^m p^n \rangle$ Easy!

Example 1) $\langle x^2 \rangle$ in Harmonic Oscillator

Example 2) $\langle p \rangle$

$$H = \frac{1}{2}p^2 + V(x). \quad \Rightarrow \quad |\langle p \rangle| \le p_* := \sqrt{2(E - E_0)} \qquad \left\{ \begin{array}{c} E_0 : \text{ground energy} \\ |0 \rangle : \text{ground state} \end{array} \right.$$

TM (2022)

TM (2022)

\star Uncertainty Relation \rightarrow Ground state

Summary

- Novel aspects of quantum mechanics:
 Uncertainty relations, Coherent states, Ground states.
- ✓ Uncertainty relation (bootstrap) \rightarrow Ground states.

<u>lssues</u>

✓ Bosons and Fermions \rightarrow Obtained bounds are weak.

Future directions

- ✓ Bounds for fixed charges, angular momentum and so on.
- ✓ Connection to other bounds in QM (chaos bound, viscosity bound, etc.)
- \checkmark Application to other statistical models.