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—>Uncertainty Relation works.

General potential

—>Numerical bootstrap method works.
(Bootstrap = a generalized uncertainty relation)

& Comment on Ground State

Summary



2. Harmonic Oscillator
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[ _VAE WD) < (2) < VAE ]2 }

> This result is equivalent to the classical result with £ — E — h/2.

zero point energy

— The classical result is corrected by the zero point energy.

v’ It is not difficult to show that this bound is saturated by coherent states. 7/18
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3. General Potential

V(x)
\ QM > / )

— Uncertainty Relation is not enough. (Az?)(Ap?) > %2 PEEEIR (%)

- Even if we know all eigen states, it is hard to obtain the bound for (z).

— We may need a generalization of the uncertainty relation involving
higher order moment observables {{x™), (p"), (p*z')} .

— Bootstrap method Han-Hartnoll-kruthoff (2020)
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3. General Potential Han-Hartnoll-Kruthoff (2020)
@ Bootstrap method

O : Operators ex) O =ax"p"

If (OTO> > (is satisfied for V() , we obtain the following relation:

K {O;} : a set of K operators (j =1,--- ,K)
0=%"¢o0, {e:} : constants X {03} = {w.p.ap.)
i=1 K : an integer ~ cut off }g
& (OTO) =cTME>0 for "{¢;}
— T
/C :(617627“'7617()
~ Eigenvalues of M are all non-negative.
o )\ ... M =0
M= . (0l0;)
" : _J (O,}LOJ-) is highly constrained!
\_ K x K matrix

Han et al use it and obtain energy eigenstate. 1118



3. General Potential ™ (2022)
€ Bootstrap method and Uncertainty Relation

SN R
M = |- (O;Oﬂ e M >~ 0 - A Generalization of Uncertainty Relation
k \_ : _ j
(Proof) O _ Col + 1 + cop Curtright-Zachos (2001)

Uncertainty relation

L (z) (p) M =0 72

M = ((-ﬁt‘) (x?) (:cp)) —  (Az®)(Ap?) > v for V| )
(p) () (p?)

> Ifwetake O = ¢gl + 12 + cop + csz® + cap* +---, M > 0 provides

stronger constraints involving higher order moment z™p" .

—> M > 0 is a generalized version of uncertainty relation.
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3. General Potential ™ (2022)
Example: Anharmonic oscillator # :%p2 + %:ﬁ + i$4
1 1 1 \
M =0, E=(H) =§<p2) + §<$2> + 1@4) <1> <(sc2>> <(P>>
: . .. x x xp
Find the maximum and minimum of (x) . M=) lpa) (p?)
- “Linear Programming" (solvable) : : :
------------- classical
(Kvap) = (2,2)
(KwaKp) = (3,3)
(Kz, Kp) = (4,4) |
(K., Kp) = (5,5) \ size of M
o eigenstate

Larger M provide stronger bounds.
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3. General Potential T™ (2022)

Example: Double well potential

1 1
H :§p2 — 5z + -zt /

v

............. classical

(Kz, Kp) = (2,2)
(KmaKp) — (3a3)
(Ke, Kp) = (5,5), size of M
o eigenstate

[ The conditions £ = (H) and M > 0 are strong enough to obtain the bounds on () }
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3. General Potential T™ (2022)

% Other observables
Bounds on (x) - Boundson (z"'p") Easy!

Example 1) <3:2> in Harmonic Oscillator

5 enennes classical
quantum

o eigenstate

E—+/E?2—h2/4<(2®) < E+4++/E?—h2/4.

0.5 1.0 1.5 2.0 25 3.0

Example 2) (p)

1
H=_p*+V(@). > |@l<p:=vAE-Fy) | Eo:ground energy

0) : ground state
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3. General Potential T™ (2022)

% Uncertainty Relation > Ground state

1 1 1 1 1
H —=2p2 4 Z2 4 — 4 T2 g2y o4
2p +2:E +4:r: H 2p oxt + —x

Lawrence (2021)

M > 0 = Ground State
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Summary .

\ classical / V(ﬂi) \ guantum / V($)
FE E

o B o

Determined by Energy Conservation r1 <(z) <x9, E=(H)

Uncertainty relation(= Bootstrap)

v" Novel aspects of quantum mechanics:
Uncertainty relations, Coherent states, Ground states.
v" Uncertainty relation (bootstrap) > Ground states.

Issues
v" Bosons and Fermions = Obtained bounds are weak.

Future directions

v" Bounds for fixed charges, angular momentum and so on.
v' Connection to other bounds in QM (chaos bound, viscosity bound, etc.)
v' Application to other statistical models. 18/18




