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Introduction()

» Matrix models were well studied in the 1980s and 1990s in the
context of two-dimensional quantum gravity theories.

» Each Feynman diagram in perturbative expansions of the matrix
models represents a corresponding simplicial decomposition of a
two-dimensional surface. In particular, Feynman diagrams of ¢3
matrix models can be regarded as triangulations of two-dimensional
surfaces. The sum over two-dimensional surfaces corresponds to path
integrals of two-dimensional quantum gravity theories.

» Fukuma, Kawai, and Nakayama proved that the Virasoro constraint
condition is equivalent to the condition that the solution of the KdV
hierarchy satisfies the string equation. Witten showed that the
Witten-Kontsevich 7-function satisfies the string equation.
Furthermore, Witten conjectured that the Witten-Kontsevich
7-function is the 7 function of the KdV hierarchy. Using the ®3
matrix model, the proof of this conjecture was done by Kontsevich.



Introduction(2)

» Quantum field theories on noncommutative spaces such as Moyal
spaces have given a new perspective to matrix models.

Matrix model on noncommutative spaces (Grosse-Wulkenhaar model)

P It corresponds to scalar field theories on noncommutative spaces,
which is renormalizable by adding harmonic oscillator potentials to
the action.

» &3 matrix model [Grosse-Sako-Wulkenhaar ('17)]

» ®* matrix model [Grosse-Hock-Wulkenhaar ('19)]

» Any n-point function of the ®3 matrix model was calculated by
solving the Schwinger-Dyson equation exactly by using the
Ward-Takahashi identity. The n-point functions of the ®3 matrix

model in the large N, V limit were calculated in the previous studies
by Grosse, Wulkenhaar, and Sako.



Introduction(3)

» The difference between the Grosse-Wulkenhaar model (®3 matrix
model) and the Kontsevich model is the way the n-point functions are
defined. Another difference is that the Grosse-Wulkenhaar model
includes terms necessary for renormalization.

In order to mathematically formulate quantum field theories as a toy
model, it is necessary to clarify the properties of the matrix model on
noncommutative spaces (Grosse-Wulkenhaar model).

To gain insight into the Grosse-Wulkenhaar model, the following studies
were conducted.
» We found the exact solutions of the ®3 finite matrix model
(Grosse-Wulkenhaar model).



Grosse-Wulkenhaar model (®3 matrix model)

Definition(Action of ®3 matrix model)

S[®] = iVtr <E¢2 + Kk + %qﬁ)

> &= (d;), i,j=1,---,N : Hermitian matrix

» E = (Ek-16km), k,m=1,--- N : diagonal matrix
> =it (34 (1)

> xeR

Definition(Partition function of ®3 matrix model)

2] = / Do exp(—S[®] + iVir(JD))

» J=(Jmn), mn=1--- N : Hermitian matrix

> Do =1]] dd)f.j Hig d¢§ . integral measure

i<j
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The n= Z N; point functions of the Grosse-Wulkenhaar model are

j=1
defined as follows:
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» Feynman diagrams of 1-point function G|,
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> Feynman diagrams of 2-point functions G,p|
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Calculation of partition function Z[J]

Z[J] ::/D¢ exp (—inr (E¢2 + kP + gqﬁ)) exp (iVtr (JO))
l

Z[J] =exp <—:’>\Vtr (§(5)3 —RE + iJE»

J (oo (22)) (I o0o7)

/dU exp (i)\VT{tr{(M e K)U)?U*})

The integration is divided into diagonal elements and off-diagonal elements.

> ox=[]ax ] (u-x)dU 3

i=1  1<k<I<N




ltzykson-Zuber integral [4]

(et (exp (tAi(A))i(B)))
/ exp (ttr (AUBU*)) dU =cy————
U(N) 3

t 7 A(AA)A(ANB))

> A, B : Hermitian matrix
> XNi(A),\i(B) i=1,---,N : Eigenvelues of A, B
> dU= [[ (U du)F(Urdv);

1<i<j<N
> t e C/{0}

> A(NA)) = H (Aj(A) = Ai(A)) : Vandermonde determinant
1<i<j<N

. N(N-1) . .
> cy = H ihx T2 : normalization constant



The off-diagonal elements are integra\ked using the Itzykson-Zuber integral.

det exp (iAVExs;)

/dUeXp (ixvm{(/w—m K)U)?U*}) CI 1=1=l
NTTes =) [ (s =)
i<j i<j

The diagonal elements are intégrated using the Airy function.
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» Ai(y) : Airy function
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Calculation of 1-Point Function G

In the following, J is treated as a diagonal matrix. In the calculation of the
1-point function G,
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B
The n= Z N; point functions from the Schwinger-Dyson equation[1][2]

j=1
are expressed as follows:
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Calculation of n-Point Functions Gj1.|...|an)

Theorem n-Point Functions Gj,1|52|...an|
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> Z means the sum over all partitions 7 of the set {1,...,n}.
™
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> H is the product over all of the parts B of the partition 7.
Bern

> Z means the sum over all subsets of B.
ScB

> Z means the sum over all subsets of S = B\S.
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Calculation of 2-Point Functions G122

The 2-point functions G);1,2) can be calculated by computing the

2-patterns of m = {{1,2}},m = {{1},{2}}.

First, we calculate the case of 7 = {{1,2}}.

> B=1{12)
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From this, the calculation result for 7 = {{1,2}} is as follows:

1 922[Y
Z[0] 951,100 2,2

. (13% (47)

J=0

An(zi, - -, zy)

) {F({l, 24,0,0) + F(0,{1,2},0) + F(0,0,{1,2})

2
+ D (F({/}v{n}7®)+F({/}ﬁ,{n})+F(®7{/}7{n})>}



Next we calculate the case of m = {{1},{2}}.

> B={1},0r{2}

d\™ a8 Z[J] 1 0zZ[J]| 9Z[J
— log x =
<dx> ( ) —2[0) ;;[ﬂ H 8, =0 Z[0]2 0151 | j—g 0222 | g
JjEB

From this, the calculation result for 7 = {{1},{2}} is as follows:
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Summarizing the results of the calculations, we obtain
1 0 Z[J] 1 0Z[J] 0Z[J]
Z[O] 0J1,10d J=0 Z[O]2 0Ji J=0 02
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Overall Summary and Future Prospect

The ®3 matrix model (Grosse-Wulkenhaar model) was constructed based
on the scalar ®3 theory on noncommutative spaces. Therefore, we can
mathematically formulate the scalar ®3 theory on noncommutative spaces
by clarifying the properties of the ®3 matrix model (Grosse-Wulkenhaar
model).

» In this study, we obtained the exact solutions of the n-point functions
of the finite Grosse-Wulkenhaar model (®3 matrix model).

> It is known that any G|ai...a}\, |..|aB...a8 | €an be expressed using
1 B

Gja1...]an| type n-point functions. Thus we focus on rigorous
calculations of Gy, |,n. The formula for G 1| |50 is obtained, and it
is achieved by using the partition function Z[J] calculated by the
Harish-Chandra-ltzykson-Zuber integral.

» In the future, we would like to clarify the properties of the ®* matrix
model (Grosse-Wulkenhaar model) in order to mathematically
formulate the scalar ®* theory on noncommutative spaces.
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