Exact solution of the finite Grosse-Wulkenhaar model

Thursday, 8 December 2022 16:00 (20 minutes)

We find the exact solutions of the Φ_2^3 finite matrix model (Grosse-Wulkenhaar model). In the Φ_2^3 finite matrix model, multipoint correlation functions are expressed as $G_{|a_1^1...a_{N_1}^1|...|a_1^B...a_{N_B}^B|}$. The $\sum_{i=1}^B N_i$ -point function denoted by $G_{|a_1^1...a_{N_1}^1|...|a_1^B...a_{N_B}^B|}$ is given by the sum over all Feynman diagrams (ribbon graphs) on Riemann surfaces with *B*-boundaries, and each $|a_1^i \cdots a_{N_i}^i|$ corresponds to the Feynman diagrams having N_i -external lines from the *i*-th boundary. It is known that any $G_{|a_1^1...a_{N_1}^1|...|a_1^B...a_{N_B}^B|}$ can be expressed using $G_{|a^1|...|a^n|}$ type *n*-point functions. Thus we focus on rigorous calculations of $G_{|a^1|...|a^n|}$. The formula for $G_{|a^1|...|a^n|}$ is obtained, and it is achieved by using the partition function $\mathcal{Z}[J]$ calculated by the Harish-Chandra-Itzykson-Zuber integral.

Primary author: Mr KANOMATA, Naoyuki (Tokyo University of Science)
Presenter: Mr KANOMATA, Naoyuki (Tokyo University of Science)
Session Classification: Parallel session A