Toward realistic de Sitter heterotic-string models with stable moduli

- 1989 · · · Minimal Standard Heterotic String Models · · ·
- 2003 \cdots Classification of fermionic $Z_2 \times Z_2$ orbifolds \cdots
- 2019 · · · 10D tachyonic vacua \rightarrow phenomenology?
- 2022 · · · toward de Sitter vacua with stable moduli · · ·
 - AEF, DV Nanopoulos, K Yuan, NPB335 (1989) 347;
 - AEF, EPJC 79 (2019) 703;
 - AEF, B Percival, V Matyas,
 - EPJC 80 (2020) 337; NPB 961 (2020) 115231; PRD 104 (2021) 046002; PLB 814 (2021) 136080; PRD 106 (2022) 026011.
 - KEK Annual Theory Workshop 2022, Zoom, 7 December 2022

DATA → STANDARD MODEL → HIGGS! EWX -> PERTUBATIVE STANDARD MODEL -> UNIFICATION

EVIDENCE: 16 of SO(10), Log running, proton stability, neutrino masses

+ $\underline{GRAVITY}$ < --- > STRINGS

UNIFICATION of Flavour, Gravity and Hierarcchy

PRIMARY GUIDES:

3 generations SO(10) embedding

Higgs : Fundamental? Composite? SM? Multi? SSC?!

Elements of string unification:

Class	ically	$g^{\alpha\beta}$ —	$\rightarrow \eta^{\alpha\beta}$	2D WS-me	tric
Quan	itum	D = 26	(Bosonic)	$D = 10 \; (Ferr$	nionic)
Heter	rotic–string	$D_{L} = 10$		$D_R = 26$	
		REAL W	ORLD D	= 4	
\Rightarrow	Bosonic	\rightarrow	4_{L+R} +	$22_L + 22_R$	
\Rightarrow	Fermionic	\rightarrow	4_{L+R} +	$6_L + 6_R$	
\Rightarrow	Heterotic-s	string $ ightarrow$	4_{L+R} +	$(6_L + 6_R) -$	- 16 _R
				6D IM	16D w $R_J = \sqrt{2}$

Moduli \rightarrow size & shape of internal 6D manifold

REALISTIC STRING MODELS :

heterotic 10D -> heterotic 4D

6D compactifications
$$(T^2 x T^2 x T^2)$$

FREE FERMIONIC MODELS – $Z_2 X Z_2$ Orbifold -> U(1)_Y \in SO(10) $\frac{6}{2} = 1+1+1$ $Z_2 X Z_2$ orbifolds

torus: One complex parameter $Z = Z + n e_1 + m e_2$

 $T^2 x T^2 x T^2 \longrightarrow$ Three complex coordinates z_1 , z_2 and z_3

$$Z_{2} \text{ orbifold}: \qquad Z = -Z + \sum_{i} m_{i} e_{i} \longrightarrow 4 \text{ fixed points}$$
$$Z = \{ 0, 1/2 e_{i}, 1/2 e_{2}, 1/2 (e_{i} + e_{2}) \}$$

$$\frac{T^{2} x T^{2} x T^{2}}{Z_{2} X Z_{2}} \qquad \begin{array}{c} \alpha : (z1, z2, z3) \rightarrow (-z1, -z2, +z3) \rightarrow 16\\ \beta : (z1, z2, z3) \rightarrow (+z1, -z2, -z3) \rightarrow 16\\ \alpha\beta : (z1, z2, z3) \rightarrow (-z1, +z2, -z3) \rightarrow 16\\ \alpha\beta : (z1, z2, z3) \rightarrow (-z1, +z2, -z3) \rightarrow 16\\ \end{array}$$

 $\gamma:(z_1, z_2, z_3) \rightarrow (z_1+1/2, z_2+1/2, z_3+1/2) \longrightarrow 24$

Fermionic $Z_2 \times Z_2$ orbifolds

'Phenomenology of the Standard Model and Unification'

- Minimal Superstring Standard Model
- \bullet Top quark mass \sim 175–180GeV
- Generation mass hierarchy
- CKM mixing
- Stringy seesaw mechanism
- Gauge coupling unification
- Proton stability
- Squark degeneracy
- Moduli fixing
- Classification

NPB 335 (1990) 347 (with Nanopoulos & Yuan) PLB 274 (1992) 47 NPB 407 (1993) 57 NPB 416 (1994) 63 (with Halyo) PLB 307 (1993) 311 (with Halyo) NPB 457 (1995) 409 (with Dienes) NPB 428 (1994) 111 NPB 526 (1998) 21 (with Pati) NPB 728 (2005) 83 $2003 - \cdot \cdot \cdot$

(with Kounnas, Rizos & ... Percival, Matyas)

Point, String, Membrane

+ ... SO(16)xSO(16), E8, SO(16)xE8 + ...

... Abel, Basile, Dienes, Kaidi, Itoyama ...

Fermionic Construction

<u>Left-Movers</u>: $\psi^{\mu=1,2}$, χ_i , y_i , ω_i $(i = 1, \cdots, 6)$ <u>Right-Movers</u>

Model building – Construction of the physical states

$$\begin{split} b_{j} \quad j = 1, \cdots, N \quad \to \quad \Xi = \sum_{j} n_{j} b_{j} \\ \text{For } \vec{\alpha} = (\vec{\alpha}_{L}; \vec{\alpha}_{R}) \in \Xi \quad \Rightarrow \quad \mathsf{H}_{\vec{\alpha}} \\ \alpha(f) = 1 \quad \Rightarrow \quad |\pm\rangle \quad ; \quad \alpha(f) \neq 1 \quad \Rightarrow \quad f|0\rangle, f^{*}|0\rangle \quad , \quad \nu_{f,f^{*}} = \frac{1 \mp \alpha(f)}{2} \\ M_{L}^{2} = -\frac{1}{2} + \frac{\vec{\alpha}_{L} \cdot \vec{\alpha}_{L}}{8} + N_{L} = -1 + \frac{\vec{\alpha}_{R} \cdot \vec{\alpha}_{R}}{8} + N_{R} = M_{R}^{2} \quad (\equiv 0) \\ \underline{\text{GSO projections}} \qquad e^{i\pi(\vec{b}_{i} \cdot \vec{F}_{\alpha})} |s\rangle_{\vec{\alpha}} = \delta_{\alpha} c^{*} \begin{pmatrix} \vec{\alpha} \\ \vec{b}_{i} \end{pmatrix} |s\rangle_{\vec{\alpha}} \\ F_{\alpha}(f) \rightarrow \text{ fermion } \# \text{ operator } = \begin{cases} -1, \quad |-\rangle \\ 0, \quad |+\rangle \end{cases} = \begin{cases} +1, \quad f \\ -1, \quad f^{*} \\ -1, \quad f^{*} \end{cases} \\ Q(f) = \frac{1}{2}\alpha(f) + F(f) \quad \rightarrow \quad U(1) \text{ charges} \end{split}$$

Example : $\vec{\alpha} = \vec{S} = (\underbrace{1, \cdots, 1}, 0, \cdots, 0 | 0, \cdots, 0).$ $\psi_{12}^{\mu}, \chi^{12}, \chi^{34}, \chi^{56}$ $(\vec{S}_L \cdot \vec{S}_L = 4 \quad \vec{S}_R \cdot \vec{S}_R = 0)$ For $\alpha(f) = 1 \rightarrow \text{periodic BC} \Rightarrow F : |\pm\rangle = \begin{cases} -1, & F : |-\rangle \\ 0, & F : |+\rangle \end{cases}$ otherwise $F(f|0\rangle; f^*|0\rangle) = \pm 1|0\rangle$ $\nu_{f;f^*} = \frac{1 \pm \alpha(f)}{2}$ $M_{I}^{2} = -\frac{1}{2} + \frac{4}{8} + N_{L} = -1 + \frac{0}{8} + N_{R} = M_{R}^{2}$ Mass formula $\nu_f = \frac{1\pm 0}{2} = \frac{1}{2} \implies N_B = \frac{1}{2} + \frac{1}{2} = 1$ $|S\rangle_{S} = |D\rangle_{L}\bar{\phi}_{\frac{1}{2}}\bar{\phi}_{\frac{1}{2}}|0\rangle_{R} \qquad |D\rangle_{L} = \left|\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4}\right|$ apply GSO projections : $e^{i\pi \vec{S}\cdot\vec{F}_S}|S\rangle_S = \delta_S c^*\binom{S}{S}|S\rangle_S = \pm |S\rangle_S$ $\Rightarrow \left[\begin{pmatrix} 4\\0 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} + \begin{pmatrix} 4\\4 \end{pmatrix} \right]_{\perp} \quad \text{or} \quad \left[\begin{pmatrix} 4\\1 \end{pmatrix} + \begin{pmatrix} 4\\3 \end{pmatrix} \right]_{\perp}$ $Q(\bar{f}) = \frac{1}{2} \cdot 0 \pm 1 = \pm 1$

(Modern School)

Basis vectors:

 $1 = \{\psi^{\mu}, \chi^{1,\dots,6}, y^{1,\dots,6}, \omega^{1,\dots,6} \mid \bar{y}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8}\}$ $S = \{\psi^{\mu}, \chi^{1,\dots,6}\},\$ $S + \Xi \longrightarrow SUSY$ generator $z_1 = \{\bar{\phi}^{1,\dots,4}\}.$ $z_2 = \{\bar{\phi}^{5,\dots,8}\}.$ $e_i = \{y^i, \omega^i | \bar{y}^i, \bar{\omega}^i\}, \ i = 1, \dots, 6,$ N = 4 Vacua $b_1 = \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^1, \bar{\psi}^{1,\dots,5}\},\$ $N = 4 \rightarrow N = 2$ $b_2 = \{\chi^{12}, \chi^{56}, y^{12}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^2, \bar{\psi}^{1,\dots,5} \},\$ $N = 2 \rightarrow N = 1$ $\alpha = \{ \bar{\psi}^{4,5}, \bar{\phi}^{1,2} \}$ & $SO(10) \rightarrow SO(6) \times SO(4) \times \cdots$ $\beta = \{\overline{\psi}^{1,\dots,5} \equiv \frac{1}{2},\dots\}$ & $SO(10) \rightarrow SU(5) \times U(1) \times \cdots$

Independent phases $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$: upper block

A priori 66 independent coefficients $\rightarrow 2^{66}$ distinct vacua PLB2021, Percival $et \ al \rightarrow$ Satisfiability Modulo Theories $\longrightarrow t \times 10^{-3}$ Pati-Salam class: with Assel, Christodoulides, Kounnas, Rizos

RESULTS: of random search of over 10¹¹ vacua

Number of 3-generation models versus total number of exotic multiplets

NON–SUSY String Phenomenology:

Starting with: $Z_{10d}^+ = (V_8 - S_8) \left(\overline{O}_{16} + \overline{S}_{16}\right) \left(\overline{O}_{16} + \overline{S}_{16}\right),$ using the level-one SO(2n) characters

 $O_{2n} = \frac{1}{2} \left(\frac{\theta_3^n}{\eta^n} + \frac{\theta_4^n}{\eta^n} \right), \qquad V_{2n} = \frac{1}{2} \left(\frac{\theta_3^n}{\eta^n} - \frac{\theta_4^n}{\eta^n} \right), \\ S_{2n} = \frac{1}{2} \left(\frac{\theta_2^n}{\eta^n} + i^{-n} \frac{\theta_1^n}{\eta^n} \right), \qquad C_{2n} = \frac{1}{2} \left(\frac{\theta_2^n}{\eta^n} - i^{-n} \frac{\theta_1^n}{\eta^n} \right).$

where

$$\theta_3 \equiv Z_f \begin{pmatrix} 0\\ 0 \end{pmatrix} \qquad \theta_4 \equiv Z_f \begin{pmatrix} 0\\ 1 \end{pmatrix} \qquad \theta_2 \equiv Z_f \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad \theta_1 \equiv Z_f \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

Apply $g = (-1)^{F + F_{z_1} + F_{z_2}}$

 $Z_{10d}^{-} = \begin{bmatrix} V_8 \left(\overline{O}_{16} \overline{O}_{16} + \overline{S}_{16} \overline{S}_{16} \right) - S_8 \left(\overline{O}_{16} \overline{S}_{16} + \overline{S}_{16} \overline{O}_{16} \right) \\ + \underbrace{O_8 \left(\overline{C}_{16} \overline{V}_{16} + \overline{V}_{16} \overline{C}_{16} \right) - C_8 \left(\overline{C}_{16} \overline{C}_{16} + \overline{V}_{16} \overline{V}_{16} \right) \end{bmatrix}.$

In fermionic language: $\{\mathbf{1}, \mathbf{z}_1, \mathbf{z}_2\}$

where
$$z_1 = \{\bar{\psi}^{1, \cdots, 5}, \bar{\eta}^{1, 2, 3}\}$$
; $z_2 = \{\bar{\phi}^{1, \cdots, 8}\} \Rightarrow S = 1 + z_1 + z_2$
 $c\binom{z_1}{z_2} = +1 \implies E_8 \times E_8$; $c\binom{z_1}{z_2} = -1 \implies SO(16) \times SO(16)$

Tachyon free non-SUSY string phenomenology

Alternatively: Apply $g = (-1)^{F+F_{z_1}}$

$$Z_{10d}^{-} = \left(V_8 \overline{O}_{16} - S_8 \overline{S}_{16} + \underline{O_8 \overline{V}_{16}} - C_8 \overline{C}_{16} \right) \left(\overline{O}_{16} + \overline{S}_{16} \right),$$

 $O_8 \overline{V}_{16} \overline{O}_{16} \implies$ tachyonic 10D vacuum

In fermionic language: $\{ \mathbf{1}, z_2 \} \implies \text{No } S$

In both cases \longrightarrow tachyon free 4D GSO configurations

Tachyon free models: $S \longleftrightarrow \tilde{S}$ -map \longleftarrow "modular map"

$\mathsf{Modified} \ \mathsf{NAHE} \longleftrightarrow \overline{\mathrm{NAHE}}$

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	$y^{3,,6}$	$\bar{y}^{3,,6}$	$y^{1,2},\omega^{5,6}$	$ar{y}^{1,2},ar{\omega}^{5,6}$	$\omega^{1,\dots,4}$	$\bar{\omega}^{1,\dots,4}$	$ar{\psi}^{1,,5}$	$\bar{\eta}^1$	$ar{\eta}^2$	$ar{\eta}^3$	$ar{\phi}^{1,,8}$
1	1	1	1	1	1,,1	1,,1	1,,1	1,,1	1,,1	1,,1	1,,1	1	1	1	1,1,1,1,1,1,1,1
\tilde{S}	1	1	1	1	0,,0	0,,0	0,,0	0,,0	0,,0	0,,0	0,,0	0	0	0	1,1,1,1,0,0,0,0
b_1	1	1	0	0	1,,1	1,,1	0,,0	0,,0	0,,0	0,,0	1,,1	1	0	0	0,0,0,0,0,0,0,0
b_2	1	0	1	0	0,,0	0,,0	1,,1	1,,1	0,,0	0,,0	1,,1	0	1	0	0,0,0,0,0,0,0,0
b_3	1	0	0	1	0,,0	0,,0	0,,0	0,,0	1,,1	1,,1	1,,1	0	0	1	0,0,0,0,0,0,0,0

Beyond the $\overline{\text{NAHE}}$ -set

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	y^3y^6	$y^4 ar{y}^4$	$y^5 ar{y}^5$	$\bar{y}^3 \bar{y}^6$	$y^1 \omega^5$	$y^2 ar y^2$	$\omega^6 \bar{\omega}^6$	$\bar{y}^1 \bar{\omega}^5$	$\omega^2 \omega^4$	$\omega^1 \bar{\omega}^1$	$\omega^3 \bar{\omega}^3$	$^3 \ \bar{\omega}^2 \bar{\omega}^4$	$ar{\psi}^{1,,5}$	$ar{\eta}^1$	$ar{\eta}^2$	$\bar{\eta}^3$	$ar{\phi}^{1,}$
α	0	0	0	0	1	0	0	1	0	0	1	1	0	0	1	1	11100	1	0	0	0000
β	0	0	0	0	0	0	1	1	1	0	0	1	0	1	0	1	11100	0	1	0	1100
γ	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$0 \ 0 \ \frac{1}{2} \ \frac{1}{2}$
		_		a			$\tilde{\gamma}$														

Up to the $S \longleftrightarrow S$ -map

- Same model as published with
- with Cleaver, Manno and Timirgaziu in PRD78 (2008) 046009
- Stable non–SUSY heterotic–string vacuum?

 $\begin{array}{l} \underline{\mathsf{Moduli}} \to \mathsf{WS \ Thirring \ interactions} \ (R - \frac{1}{R}) J_L^i(z) \bar{J}_R^j(\bar{z}) = (R - \frac{1}{R}) y^i \omega^i \bar{y}^j \bar{\omega}^j \\ & \quad \text{To \ identify \ the \ untwisted \ moduli \ in \ the \ free \ fermionic \ models} \\ & \quad \rightarrow \ find \ the \ operators \ of \ the \ form \\ & \quad J_L^I(z) \bar{J}_R^J(\bar{z}) \quad \equiv \quad y^I \omega^I \bar{y}^J \bar{\omega}^J \\ & \quad \text{that \ are \ allowed \ by \ the \ orbifold \ (fermionic) \ symmetry \ group} \\ & \quad Z_2 \times Z_2 \qquad \left\{ \ 1 \ , \ S \ , \ z_1 \ , \ z_2 \ \right\} \ + \ \left\{ \ b_1 \ , \ b_2 \ \right\} \end{array}$

$$\rightarrow SO(4)^3 \times E_6 \times U(1)^2 \times E_8$$

The Thirring interactions that remain invariant are

These moduli are always present in symmetric $Z_2 \times Z_2$ orbifolds

in realistic models

 $\{1, S, z_1, z_2\} \oplus \{b_1, b_2\} \oplus \{\alpha, \beta, \gamma\}$ $N = 4 \qquad \qquad N = 1$ $E_8 \times E_8 \qquad \qquad Z_2 \times Z_2$ new feature Asymmetric orbifold $y^i \omega^i \bar{y}^i \bar{\omega}^i \rightarrow -y^i \omega^i \bar{y}^i \bar{\omega}^i$ the key focus: boundary conditions of the internal fermions $\{y, \omega \mid \overline{y}, \overline{\omega}\}$

WS fermions that have same B.C. in all basis vectors are paired pairing of LR fermions \rightarrow Ising model \rightarrow symmetric real fermions pairing of LL & RR fermions \rightarrow complex fermions \rightarrow asymmetric

STRING DERIVED STANDARD-LIKE MODEL (PLB278)

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	$y^{3,,6}$	$\bar{y}^{3,,6}$	$y^{1,2},\omega^{5,6}$	$ar{y}^{1,2},ar{\omega}^{5,6}$	$\omega^{1,,4}$	$\bar{\omega}^{1,,4}$	$ar{\psi}^{1,,5}$	$\bar{\eta}^1$	$\bar{\eta}^2$	$\bar{\eta}^3$	$ar{\phi}^{1,,8}$
1	1	1	1	1	1,,1	1,,1	1,,1	1,,1	1,,1	1,,1	1,,1	1	1	1	1,,1
S	1	1	1	1	0,,0	0,,0	0,,0	0,,0	0,,0	0,,0	0,,0	0	0	0	0,,0
b_1	1	1	0	0	1,,1	1,,1	0,,0	0,,0	0,,0	0,,0	1,,1	1	0	0	0,,0
b_2	1	0	1	0	0,,0	0,,0	1,,1	1,,1	0,,0	0,,0	1,,1	0	1	0	0,,0
b_3	1	0	0	1	0,,0	0,,0	0,,0	0,,0	1,,1	1,,1	1,,1	0	0	1	0,,0

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	y^3y^6	$y^4 \bar{y}^4$	$y^5 \bar{y}^5$	$ar{y}^3ar{y}^6$	$y^1\omega^5$	$y^2 \bar{y}^2$	$\omega^6 \bar{\omega}^6$	$ar{y}^1ar{\omega}^5$	$\omega^2 \omega^4$	$\omega^1 \bar{\omega}^1$	$\omega^3 \bar{\omega}^3$	$\bar{\omega}^2 \bar{\omega}^4$	$ar{\psi}^{1,,5}$	$\bar{\eta}^1$	$ar{\eta}^2$	$ar{\eta}^3$	ς
α	0	0	0	0	1	0	0	0	0	0	1	1	0	0	1	1	11100	0	0	0	111
β	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0	1	11100	0	0	0	111
γ	0	0	0	0	0	1	0	1	0	1	0	1	1	0	0	0	$\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$ 0 1

Asymmetric $BC \Rightarrow$ all untwisted moduli are projected out! all $y_i \omega_i \bar{y}_i \bar{\omega}_i$ are disallowed

can be translated to asymmetric bosonic identifications

$$X_L + X_R \rightarrow X_L - X_R$$

moduli fixed at enhanced symmetry point

Classification of tachyon free models

Basis vectors:

 $1 = \{\psi^{\mu}, \chi^{1,\dots,6}, \psi^{1,\dots,6}, \omega^{1,\dots,6} \mid \bar{\psi}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8}\}$ $S = \{\psi^{\mu}, \chi^{1,...,6}\}$ and $\tilde{S} = \{\psi^{\mu}, \chi^{1,\dots,6} \mid \bar{\phi}^{3,\dots,6}\},\$ $z_1 = \{\bar{\phi}^{1,\dots,4}\},\$ $z_2 = \{\bar{\phi}^{5,\dots,8}\}.$ $e_i = \{y^i, \omega^i | \bar{y}^i, \bar{\omega}^i\}, i = 1, \dots, 6,$ $b_1 = \{\psi^{12}, \chi^{12}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^1, \bar{\psi}^{1,\dots,5}\},\$ $N = 4 \rightarrow N = 2$ $b_2 = \{\psi^{12}, \chi^{34}, y^{12}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^2, \bar{\psi}^{1,\dots,5} \},\$ $N = 2 \rightarrow N = 1$ $\alpha = \{ \bar{\psi}^{4,5}, \bar{\phi}^{1,2} \}$

with Viktor Matyas and Ben Percival, NPB 961 (2020) 115231; PRD 104 (2021) 04600; PRD 106 (2022) 026011 Partition functions and the cosmological constant

Full Partition Function for Free Fermionic models:

$$Z_{ToT} = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} Z_B Z_F \equiv \Lambda$$

Integral over the inequivalent tori

• Fermionic contribution:

$$Z_F = \sum_{Sp.Str.} c \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \prod_f Z \begin{bmatrix} \alpha(f) \\ \beta(f) \end{bmatrix}$$
$$Z \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \sqrt{\frac{\theta_1}{\eta}}, \qquad Z \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \sqrt{\frac{\theta_2}{\eta}}, \qquad Z \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \sqrt{\frac{\theta_3}{\eta}}, \qquad Z \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \sqrt{\frac{\theta_4}{\eta}},$$

• Bosonic :

$$Z_B = \frac{1}{\tau_2} \frac{1}{\eta^2 \bar{\eta}^2}$$

from spacetime Bosons.

Evaluated using $q \equiv e^{2\pi i \tau}$ expansion

$$Z = \sum_{n.m} a_{mn} \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^3} q^m \bar{q}^n$$

$$\begin{cases} d\tau_1 & \longrightarrow analytic \\ d\tau_2 & \longrightarrow numeric \end{cases}$$

q - expansion of Z

$$I_{mn} = \begin{cases} \infty & \text{if } m+n < 0 \land m-n \notin \mathbb{Z} \setminus \{0\} \\ \text{Finite} & \text{Otherwise.} \end{cases}$$

- On-Shell Tachyons cause divergence
- Off-Shell Tachyons allowed (necessary)

Modular invariance $\longrightarrow m - n \in \mathbb{Z}$.

Allowed states

$$a_{mn} = \begin{pmatrix} 0 & 0 & a_{-\frac{1}{2}-\frac{1}{2}} & 0 & 0 & 0 & a_{-\frac{11}{22}} & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{-\frac{1}{4}-\frac{1}{4}} & 0 & 0 & 0 & a_{-\frac{13}{44}} & 0 & 0 \\ a_{0-1} & 0 & 0 & 0 & a_{00} & 0 & 0 & a_{01} & 0 \\ 0 & a_{\frac{1}{4}-\frac{3}{4}} & 0 & 0 & 0 & a_{\frac{11}{44}} & 0 & 0 & \cdots \\ 0 & 0 & a_{\frac{1}{2}-\frac{1}{2}} & 0 & 0 & 0 & a_{\frac{11}{22}} & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{\frac{3}{4}-\frac{1}{4}} & 0 & 0 & 0 & a_{\frac{33}{44}} & 0 \\ a_{1-1} & 0 & 0 & 0 & a_{10} & 0 & 0 & a_{11} & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots \end{pmatrix}$$

Coefficients $a_{mn} = N_b - N_f$ at specific mass level.

For SUSY Theories $a_{mn} = 0 \ \forall m, n$

Some interesting results

viable \tilde{S} -models: only SM $\times U(1)_{Z'}$.

No heavy Higgs to break FSU5 or PS symmetry; $SM \times U(1)_{Z'} \rightarrow Z'$ exotics

Distribution of Λ

Toward de Sitter vacua with stable moduli

(Work in progress with Alonzo Diaz, Viktor Matyas and Benjamin Percival) Classification of asymmetric N = 0 vacua (w Matyas & Percival PRD106) Fix two tori at R = 1 using asymmetric boundary condition Vary the moduli of the remaining unfixed torus (following Florakis & Rizos) Find minima with $\Lambda_{min} > 0$

Scan for models with realistic features and stable $\Lambda_{min} > 0$

- DATA \longrightarrow UNIFICATION \longleftrightarrow HiggStructure?
- STRINGS THEORY \longrightarrow GAUGE & GRAVITY UNIFICATION
- STRINGS PHENOMENOLOGY \longrightarrow AT ITS INFANCY

STILL LEARNING HOW TO WALK

- SUSY/Non–SUSY string phenomenology · · · · · ·
- Vacua with/out S-SUSY generator
- Role of non–geometric backgrounds $\leftrightarrow \rightarrow$ Moduli Fixing
- String Phenomenology \longrightarrow Physics of the third millennium

e.g. Aristarchus to Galileo