Stability of open-string models with broken supersymmetry

Hervé Partouche

CNRS and Ecole Polytechnique
December 8, 2022

- S. Abel, T. Coudarchet and H.P., Nucl. Phys. B 957 (2020) 115100
- H.P. and T. Coudarchet, JHEP 12 (2021) 022

KEK Theory Workshop 2022, Japan

Introduction

- How moduli in string theory can acquire masses and be stabilized in \sim flat spacetime?

■ Our approach:

- Consider models at tree level, where supersymmetry is spontaneously broken in Minkowski spacetime.
- At the quantum level, loop corrections induce an effective potential \mathcal{V} (moduli).
- We want to find minima.

The ideal goal would be to find minima satisfying $\langle\mathcal{V}\rangle \gtrsim 0$.

■ Concretely: Break susy by a string version of the "Scherk-Schwarz mechanism" i.e. at a scale

$$
M=\frac{1}{R}, \quad \text { where } R \text { is an internal radius }
$$

- Compute \mathcal{V} (moduli) at one loop
- If we sit at a point in moduli space where M is lower than all other mass scales of the model (string scale, or from other moduli), then \mathcal{V} is extremal with respect to all moduli, except M, up to exponentially suppressed terms

$$
\mathcal{V}=M^{d}\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi+\mathcal{O}\left(\left(M_{\mathrm{s}} M\right)^{\frac{d}{2}} e^{-2 \pi c \frac{M_{\mathrm{s}}}{M}}\right)
$$

$\diamond n_{\mathrm{F}}, n_{\mathrm{B}}$ are the numbers of massless fermionic and bosonic d.o.f. $\diamond \xi>0$ is the contribution of KK modes along the SS directions. $\diamond c M_{\mathrm{s}}$ is the lowest mass scale above M. (E.g. 100 times bigger)

$$
\mathcal{V}=M^{d}\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi+\mathcal{O}\left(\left(M_{\mathrm{s}} M\right)^{\frac{d}{2}} e^{-2 \pi c \frac{M_{\mathrm{s}}}{M}}\right)
$$

■ We want to find the extrema that are minima, $\boldsymbol{n}_{\mathbf{F}}=\boldsymbol{n}_{\mathbf{B}}$
i.e. Bose/Fermi degeneracy at the massless level [Itoyama, Taylor, 87$]$
[Abel, Dienes, Mavroudi,'15]
[Kounnas, Partouche,'16]

- All moduli are stabilized at one loop,
- Except M, the dilaton and other moduli that remain flat directions.
- With extra effects, this could be useful to realize $\langle\mathcal{V}\rangle \gtrsim 0$.

■ In Type I string on T^{10-d}, with Scherk-Schwarz along one circle:

- Restrict to brane configurations consistent non-perturbatively (Heterotic dual exist).
- The minima with respect to all moduli except M have $n_{\mathrm{F}}-n_{\mathrm{B}}<0$
- except a single minimum with no open string gauge group, $n_{\mathrm{F}}-n_{\mathrm{B}}=64, d \leq 5$.
[Abel, Dudas, Lewis, H.P., '18], [Angelantonj, H.P., Pradisi, '19]

■ Solutions exist in Type I on

$$
\frac{T^{4}}{\mathbb{Z}_{2}} \times T^{2}
$$

[Bianchi, Sagnotti, '91]
[Gimon, Polchinski,'96]
with Scherk-Schwarz along one direction of T^{2},
i.e. $\mathcal{N}=2 \rightarrow \mathcal{N}=0$ in $d=4$.

Type IIB orientifold model contains 32 D9-branes, 32 D5-branes, and one O5-plane at each of the 16 orbifold fixed points.

■ Moduli in the open string sector

- In the Dirichlet-Dirichlet (DD) sector:
\diamond Positions of the D5-branes in T^{4} / \mathbb{Z}_{2}.
\diamond Wilson lines along T^{2} of the gauge bosons on the stacks of D5's.
- In the Neumann-Neumann (NN) sector: Similar to DD, by T-duality on T^{4} / \mathbb{Z}_{2}.
- Moduli in the Neumann-Dirichlet (ND) sector.

■ Moduli in the closed string sector

- Untwisted sector:
\diamond Internal metric $G_{I J}$ in the NS-NS sector.
\diamond Two-form $C_{I J}$ in the Ramond-Ramond sector.
- Twisted sector: Blowing up modes localized at the each of the 16 orbifold fixed points of T^{4} / \mathbb{Z}_{2}.

Moduli in DD and NN sectors

- The positions of the 32 D5-branes in T^{4} / \mathbb{Z}_{2} must be symmetric
- under the orientifold generator: A D5-brane at X^{I} admits a "mirror brane" at $-X^{I}$.
- under the \mathbb{Z}_{2} generator: A D5-brane at X^{I} has an image at $-X^{I}$.

■ $4 n$ D5-branes at a fixed point can move in the bulk :

$$
U(2 n) \rightarrow S p(1)^{n}, \quad \text { rank } 2 n \rightarrow n
$$

■ If there are $4 n+2 \mathrm{D} 5$-branes at a fixed point, 2 have rigid positions in T^{4} / \mathbb{Z}_{2}

$$
U(2 n+1) \rightarrow S p(1)^{n} \times U(1)
$$

\Longrightarrow There are distinct components in moduli space, with $0,2,4, \ldots, 32$ D5-branes rigid in $T^{4} / \mathbb{Z}_{2} \Longrightarrow$ improves stability.

- Non-perturbative consistency: Only 0,16 or 32 rigid branes
- The Wilson lines along T^{2} of the gauge bosons living on the world volume of the D5-branes can be mapped into positions by T-dualizing T^{2}.
- The 32 D5-branes become 32 D3-branes.
- The internal space becomes

$$
\begin{aligned}
& \left(\frac{T^{4}}{\mathbb{Z}_{2}} \times \tilde{T}^{2}\right) / I_{456789} \\
I_{456789}: \quad & \left(\tilde{X}^{4,5}, X^{6,7,8,9}\right) \rightarrow-\left(\tilde{X}^{4,5}, X^{6,7,8,9}\right)
\end{aligned}
$$

- The 16 O5-planes are replaced by 16×4 O3-planes at the fixed points.

■ D9-branes and D5-branes are exchanged under T-duality on T^{4} / \mathbb{Z}_{2}. We can T-dualize all 6 directions to map their moduli into positions of 32 D3-branes in

$$
\left(\frac{\tilde{T}^{4}}{\mathbb{Z}_{2}} \times \tilde{T}^{2}\right) / I_{456789}
$$

Susy breaking and spectrum

- Scherk-Schwarz mechanism along the direction X^{5} of T^{2}.
- In Field Theory: Kaluza-Klein theory in $\mathbb{R}^{1,3} \times S^{1}$, with different boundary conditions for the bosonic and fermionic fields along the extra dimension

$$
(\mathrm{KK} \text { mass })^{2}=\left(m_{5}+\frac{F}{2}+a_{\alpha}^{5}-a_{\beta}^{5}\right)^{2} G^{55} M_{\mathrm{s}}^{2}
$$

- $F=0$ for Bosons, $F=1$ for Fermions.
- In the NN sector, $a_{\alpha}^{5}, a_{\beta}^{5}$ are Wilson lines along X^{5}.
- In the T-dual picture, the string is stretched between two D3-branes α, β whose coordinates along \tilde{X}^{5} are $a_{\alpha}^{5}, a_{\beta}^{5}$.
$\Longrightarrow \quad$ Susy breaking scale $\quad M=M_{\mathrm{s}} \frac{\sqrt{G^{55}}}{2}$
- Massless fermions arise when

$$
a_{\alpha}^{5}-a_{\beta}^{5}=\frac{1}{2} \quad \text { i.e. } \quad \text { strings stretched along } \tilde{X}^{5}
$$

The extrema of the effective potential arise when all D3-branes sit on fixed points.

- Label the 16×4 fixed points by i, i^{\prime}, where $i=1, \ldots, 16$ and $i^{\prime}=1, \ldots, 4$.
- $N_{i i^{\prime}}\left(\right.$ or $\left.D_{i i^{\prime}}\right)=$ Number of D3-branes T-dual to the D9-branes (or D5-branes) located on the O3-plane at corner i, i^{\prime}.

- The massless spectrum at tree level contains the Bosonic parts of
- $\mathcal{N}=2$ vector multiplets in $\prod_{i, i^{\prime}} U\left(N_{i i^{\prime}} / 2\right) \times U\left(D_{i i^{\prime}} / 2\right)$
- hypermultiplets in antisymmetric $\oplus \overline{\text { antisymmetric }}$ of each U-factor
- bifundamentals of each pair $U\left(N_{i i^{\prime}} / 2\right) \times U\left(D_{j i^{\prime}} / 2\right)$.
\square Fermionic parts of hypermultiplets in bifundamentals

Masses from the effective potential

$\square \mathcal{V}$ is the vacuum to vacuum amplitude. At one loop: Torus, Klein bottle, annulus and Möbius strip.

■ It is expressed in terms of the one-loop partition functions, which are known for arbitrary marginal deformations of the

- Open string moduli in the NN and DD sectors (D3-brane positions)
- Closed string moduli $G_{I J}$ in NS-NS sector (internal metric)

$$
\text { NN: } \begin{aligned}
a_{\alpha}^{I} & =\left\langle a_{\alpha}^{I}\right\rangle+\epsilon_{\alpha}^{I}, \quad \text { DD : } \quad \tilde{a}_{\alpha}^{I}=\left\langle\tilde{a}_{\alpha}^{I}\right\rangle+\tilde{\epsilon}_{\alpha}^{I}, \quad\left\langle a_{\alpha}^{I}\right\rangle,\left\langle\tilde{a}_{\alpha}^{I}\right\rangle \in\left\{0, \frac{1}{2}\right\} \\
\mathcal{V} & =M^{4} \sum_{n} \frac{\mathcal{N}_{2 n+1}(\epsilon, \tilde{\epsilon}, G)}{|2 n+1|^{5}}+\mathcal{O}\left(\left(M_{\mathrm{s}} M\right)^{2} e^{-2 \pi c \frac{M_{\mathrm{s}}}{M}}\right) \\
& =M^{4}\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi+\frac{M_{\mathrm{s}}^{2}}{2}\left(\epsilon_{r}^{I} \mathcal{M}_{r}^{2 I J} \epsilon_{r}^{J}+\tilde{\epsilon}_{r}^{I} \tilde{\mathcal{M}}_{r}^{2 I J} \tilde{\epsilon}_{r}^{J}\right)+\cdots
\end{aligned}
$$

where r runs over the independent positions.

- No tadpole \Longrightarrow Extremum

$$
\mathcal{V}=M^{4}\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi+\frac{M_{\mathrm{s}}^{2}}{2}\left(\epsilon_{r}^{I} \mathcal{M}_{r}^{2 I J} \epsilon_{r}^{J}+\tilde{\epsilon}_{r}^{I} \tilde{\mathcal{M}}_{r}^{2 I J} \tilde{\epsilon}_{r}^{J}\right)+\cdots
$$

■ For $\tilde{T}^{4} / \mathbb{Z}_{2}$ positions

$$
\mathcal{M}_{r}^{2 I J} \propto\left(N_{i(r) i^{\prime}(r)}-N_{i(r))^{i^{\prime}}(r)}-2\right) G^{I J} M^{2}
$$

where $N_{i(r) i^{\prime}(r)}$ is the number of D3-branes at the stack where the position oscillates, and $N_{i(r) \hat{\imath}^{\prime}(r)}$ is that in front, along the Scherk-Schwarz direction.

- For \tilde{T}^{2} positions:
$\mathcal{M}_{r}^{2 I J} \propto\left(N_{i(r) i^{\prime}(r)}-N_{i(r) \hat{\imath}^{\prime}(r)}-2+\frac{1}{4} \sum_{j}\left(D_{j i^{\prime}(r)}-D_{j \hat{\imath}^{\prime}(r)}\right)\right)(>0) M^{2}$
■ When all $\epsilon_{r}^{I}, \tilde{\epsilon}_{r}^{I}$ are stabilized at 0 ,

$$
\mathcal{V}=M^{4}\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi+\mathcal{O}\left(\left(M_{\mathrm{s}} M\right)^{2} e^{-2 \pi c \frac{M_{\mathrm{s}}}{M}}\right)
$$

$\Longrightarrow G^{I J}$ present in the mass terms disappear: Flat directions !!
(Up to exponentially suppressed terms.) Except $G^{55}=2 M^{2}$.

■ To see how closed string moduli can be stabilized: Use of the Heterotic/Type I duality (weak/weak duality for $d \leq 5$)

- $(G+C)_{I J}$ is mapped to $(G+B)_{I J}$, where $B_{I J}$ is the antisymmetric tensor.
- There are massive states charged under $U(1)^{6}$ associated to T^{6}
\diamond Their masses depend on $(G+B)_{I J}$
\diamond and vanish at special values of $(G+B)_{I J}$, thus enhancing $U(1)^{6}$ to a non-Abelian group.
\diamond Around these points, n_{B} increases, $\mathcal{V}_{\mathrm{Het}}$ decreases
\Longrightarrow Some of the $(G+B)_{I J}$ are stabilized there.
- Their $U(1)^{6}$ charges are the winding numbers.
\Longrightarrow In Type I, these winding states are D1-branes.
\Longrightarrow Non-perturbative effects can stabilize $(G+C)_{I J}$. Otherwise, flat directions (up to exponentially suppressed terms).

Masses from anomaly cancellation

\square On T^{4} / \mathbb{Z}_{2}, the $\mathcal{N}=1$ theory in 6 dim is chiral

$$
\prod^{16} U\left(N_{i} / 2\right) \times U\left(D_{i} / 2\right), \quad \text { rank }=32, \quad \text { has anomalous } U(1)^{\prime} \text { 's }
$$

\square The twisted sector contains, localized at each of the 16 fixed points,

- RR 4-forms $C_{4}^{i} \xrightarrow{\text { Hodge }} 0$-forms C_{0}^{i}
- 3 NS-NS real scalars

■ Anomaly cancellation requires tree level couplings between these forms and the $32 U(1)$ field strengths $d A_{a}$,
[Berkooz, Leigh, Polchinski, Schwarz, Seiberg, Witten, '96]

$$
\Longrightarrow \quad \sum_{i} \int\left(C_{0}^{i}+\sum_{a} c_{a}^{i} A_{a}\right) \wedge *\left(C_{0}^{i}+\sum_{b} c_{b}^{i} A_{b}\right)
$$

where c_{a}^{i} depend on the distribution of the D 5 -branes on the fixed points, and the distribution of the T-dual of the D9-branes.

■ If there are 16 (or more) U factors,

- 16 of them become $S U$,
- all C_{0}^{i} are "eaten." All twisted scalars massive.
- $\Longrightarrow T^{4} / \mathbb{Z}_{2}$ cannot be deformed to $K 3$.
- In four dimensions, the components along T^{2} of the massive $U(1)$'s are automatically stabilized.

Masses from 2-point functions

- Strings stretched between stacks $N_{i i^{\prime}}$ and $D_{j i^{\prime}}$
\Longrightarrow massless scalars in bifundamentals of $U\left(N_{i i^{\prime}} / 2\right) \times U\left(D_{j i^{\prime}} / 2\right)$.
■ Open string analogue of closed string twisted states: We don't know the partition function and \mathcal{V} for arbitrary vev.

[Coudarchet, H.P, 2021]

\Longrightarrow 2-point functions of "Boundary Changing Vertex Operators" 19/23

The vertex operator in ghost picture -1 involves "boundary-changing operators" σ^{67}, σ^{89} for the directions 6,7 and 8,9

$$
V_{-1}^{\alpha_{0} \beta_{0}}(z, k)=\lambda_{\alpha_{0} \beta_{0}} e^{-\phi} e^{i k \cdot X} e^{\frac{i}{2}\left(H_{67}-H_{89}\right)} \sigma^{67} \sigma^{89}
$$

■ In ghost picture $0, V_{0}^{\alpha_{0} \beta_{0}}(z, k)$ involves $\rho^{67}, \rho^{\prime 67}$ and $\rho^{89}, \rho^{\prime 89}$

$$
\begin{array}{ll}
Z \equiv \frac{X^{6}+i X^{7}}{\sqrt{2}}, & \partial Z(z) \sigma^{67}(w) \\
& \partial(z-w)^{-\frac{1}{2}} \rho^{67}(w)+\text { finite } \\
& \partial \bar{Z}(z) \sigma^{67}(w) \sim(z-w)^{-\frac{1}{2}} \rho^{\prime 67}(w)+\text { finite }
\end{array}
$$

$\square Z=Z_{\mathrm{cl}}+Z_{\mathrm{qu}} \quad \Longrightarrow \quad\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right)\right\rangle=\sum_{\text {Instanton }} e^{-S_{\mathrm{cl}}}\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right)\right\rangle_{\mathrm{qu}}$
where

$$
\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right)\right\rangle_{\mathrm{qu}}=C(\tau) \times\left(\text { function of } z_{1}, z_{2}, \tau\right)
$$

- is computed by the "Stress-Tensor Method." [Atick, Dixon, Griffin,

Nemeschansky, '88], [Abel, Schofield, '04]

- $C(\tau)$ is an "integration constant" determined by taking the limit $z_{1}-z_{2} \rightarrow 0$, which reduces to the partition function.
\square Because ρ is created by acting with $\partial Z=\partial\left(Z_{\mathrm{cl}}+Z_{\mathrm{qu}}\right)$ on σ

$$
\left\langle\rho\left(z_{1}\right) \rho^{\prime}\left(z_{2}\right)\right\rangle_{\mathrm{qu}}=\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right)\right\rangle_{\mathrm{qu}}\left[\mathcal{O}\left(R_{6,7,8,9}^{2}\right)+\mathcal{O}\left(\alpha^{\prime}\right)\right]
$$

- Take a limit so that KK modes along the Scherk-Schwarz direction X^{5} dominate
$\alpha^{\prime} \rightarrow 0, \quad R_{I}=\sqrt{\alpha^{\prime}} r_{I} \rightarrow 0, \quad \frac{\alpha^{\prime}}{R_{I}}=\sqrt{\alpha^{\prime}} \frac{1}{r_{I}} \rightarrow 0, \quad I=4$ and $6,7,8,9$
i.e. string oscillators, KK and windings modes in the directions 4 and 6,7,8,9 are infinitely massive.

■ Integrate over the position of the vertices and length of the annulus and Möbius strip

$$
\left(\mathcal{M}^{\alpha_{0} \beta_{0}}\right)^{2} \propto\left[\left(N_{i i^{\prime}}-N_{i \imath^{\prime}}-2\right)+\left(D_{j i^{\prime}}-D_{j \hat{\imath}^{\prime}}-2\right)\right] M^{2}
$$

where $i, \hat{\imath}^{\prime}$ (or $j, \hat{\imath}^{\prime}$) is the fixed point separated from the fixed point i, i^{\prime} (or j, i^{\prime}) along the Scherk-Schwarz direction.

Tachyon free models at one loop

■ There are $\sim 10^{11}$ inequivalent distributions of the D3-branes on the fixed points.
\square Computer scan \Longrightarrow Only 2 have $n_{\mathrm{F}}=n_{\mathrm{B}}$ and are tachyon free

- The anomaly free gauge groups are

$$
\begin{array}{ll}
\text { (a) : } & U(1) \times S U(2)_{\mathrm{DD}} \times S U(7)_{\mathrm{DD}} \times S U(5)_{\mathrm{NN}}^{2} \\
(\mathrm{~b}): & U(1) \times S U(3)_{\mathrm{DD}} \times S U(6)_{\mathrm{DD}} \times S U(5)_{\mathrm{NN}}^{2}
\end{array}
$$

- Half of the branes are rigid in 6 dimensions.
- All dynamical positions in 4 dimensions are massive.
- All closed string twisted moduli are massive. T^{4} / \mathbb{Z}_{2} cannot be deformed.
- Flat directions at one loop: Closed string moduli $(G+C)_{I J}, M$, dilaton.

Conclusion

■ Type I models realizing $\mathcal{N}=2 \rightarrow \mathcal{N}=0$ in 4 dimensions can have all open string moduli stabilized at one loop.

- Thanks to a massless Bose/Fermi degeneracy (at tree level), the supersymmetry breaking scale M is a flat direction (at one loop), up to exponentially suppressed corrections.
- This may be good: Can M and the dilaton be stabilized at weak coupling by taking into account in the Effective Potential

$$
\text { one loop level } \mathcal{O}\left(e^{-2 \pi c \frac{M_{\mathrm{s}}}{M}}\right)+\text { two loops ? }
$$

■ Contributions to the potential of D1-brane becoming massless can stabilize some of the untwisted closed string moduli $(G+C)_{I J}$.

