Stability of open-string models with broken supersymmetry

Hervé Partouche

CNRS and Ecole Polytechnique

December 8, 2022

S. Abel, T. Coudarchet and H.P., Nucl. Phys. B 957 (2020) 115100
H.P. and T. Coudarchet, JHEP 12 (2021) 022

KEK Theory Workshop 2022, Japan

 \blacksquare How moduli in string theory can acquire masses and be stabilized in \sim flat spacetime?

■ Our approach:

• Consider models at tree level, where supersymmetry is spontaneously broken in Minkowski spacetime.

 \bullet At the quantum level, loop corrections induce an effective potential $\mathcal{V}(\mathrm{moduli}).$

• We want to find minima.

The ideal goal would be to find minima satisfying $\langle \mathcal{V} \rangle \gtrsim 0$.

■ Concretely: Break susy by a string version of the "Scherk-Schwarz mechanism" *i.e.* at a scale [Rohm,'84][Ferrara, Kounnas, Porrati,'88],

[Blum, Dienes,'97][Antoniadis, Dudas, Sagnotti,'98]

$$M = \frac{1}{R}$$
, where R is an internal radius

 $\blacksquare Compute \mathcal{V}(moduli) at one loop$

• If we sit at a point in moduli space where M is lower than all other mass scales of the model (string scale, or from other moduli), then \mathcal{V} is **extremal with respect to all moduli, except** M, up to exponentially suppressed terms

$$\mathcal{V} = M^d (n_{\rm F} - n_{\rm B}) \xi + \mathcal{O}\left((M_{\rm s} M)^{\frac{d}{2}} e^{-2\pi c \frac{M_{\rm s}}{M}} \right)$$

 $\diamond n_{\rm F}, n_{\rm B}$ are the numbers of massless fermionic and bosonic d.o.f. $\diamond \xi > 0$ is the contribution of KK modes along the SS directions. $\diamond cM_{\rm s}$ is the lowest mass scale above M. (E.g. 100 times bigger)

$$\mathcal{V} = M^d (n_{\rm F} - n_{\rm B}) \xi + \mathcal{O}\left((M_{\rm s}M)^{\frac{d}{2}} e^{-2\pi c \frac{M_{\rm s}}{M}} \right)$$

We want to find the extrema that are minima, $n_{\rm F} = n_{\rm B}$ *i.e.* Bose/Fermi degeneracy at the massless level [Itoyama, Taylor,'87]

[Abel, Dienes, Mavroudi,'15]

[Kounnas, Partouche,'16]

- \implies All moduli are stabilized at one loop,
 - Except M, the dilaton and other moduli that remain flat directions.
 - With extra effects, this could be useful to realize $\langle \mathcal{V} \rangle \gtrsim 0$.

■ In Type I string on T^{10-d} , with Scherk-Schwarz along one circle:

• Restrict to brane configurations consistent non-perturbatively (Heterotic dual exist).

- The minima with respect to all moduli except M have $n_{\rm F} n_{\rm B} < 0$
- except a single minimum with no open string gauge group, $n_{\rm F} - n_{\rm B} = 64, d \le 5.$ [Abel, Dudas, Lewis, H.P., '18], [Angelantonj, H.P., Pradisi, '19]

■ Solutions exist in Type I on

$$\frac{T^4}{\mathbb{Z}_2} \times T^2$$

[Bianchi, Sagnotti, '91] [Gimon, Polchinski,'96]

with Scherk-Schwarz along one direction of T^2 , *i.e.* $\mathcal{N} = 2 \rightarrow \mathcal{N} = 0$ in d = 4. Type IIB orientifold model contains 32 D9-branes, 32 D5-branes, and one O5-plane at each of the 16 orbifold fixed points.

Moduli in the open string sector

• In the Dirichlet-Dirichlet (DD) sector:

 \diamond Positions of the D5-branes in T^4/\mathbb{Z}_2 .

 \diamond Wilson lines along T^2 of the gauge bosons on the stacks of D5's.

• In the Neumann-Neumann (NN) sector: Similar to DD, by T-duality on T^4/\mathbb{Z}_2 .

• Moduli in the Neumann-Dirichlet (ND) sector.

■ Moduli in the closed string sector

- Untwisted sector:
 - \diamond Internal metric G_{IJ} in the NS-NS sector.

 \diamond Two-form C_{IJ} in the Ramond-Ramond sector.

• Twisted sector: Blowing up modes localized at the each of the 16 orbifold fixed points of T^4/\mathbb{Z}_2 .

Moduli in DD and NN sectors

• The positions of the 32 D5-branes in T^4/\mathbb{Z}_2 must be symmetric

• under the orientifold generator: A D5-brane at X^{I} admits a "mirror brane" at $-X^{I}$.

• under the \mathbb{Z}_2 generator: A D5-brane at X^I has an image at $-X^I$.

• 4n D5-branes at a fixed point can move in the bulk :

$$U(2n) \rightarrow Sp(1)^n$$
, rank $2n \rightarrow n$

■ If there are 4n + 2 D5-branes at a fixed point, 2 have rigid positions in T^4/\mathbb{Z}_2

$$U(2n+1) \rightarrow Sp(1)^n \times U(1)$$

 \implies There are distinct components in moduli space, with $0, 2, 4, \ldots, 32$ D5-branes rigid in $T^4/\mathbb{Z}_2 \implies$ improves stability.

• Non-perturbative consistency: Only 0, 16 or 32 rigid branes

■ The Wilson lines along T^2 of the gauge bosons living on the world volume of the D5-branes can be mapped into positions by T-dualizing T^2 .

- The 32 D5-branes become 32 D3-branes.
- The internal space becomes

 I_{456789} :

p

$$\left(\frac{T^4}{\mathbb{Z}_2} \times \tilde{T}^2\right) / I_{456789}$$

: $(\tilde{X}^{4,5}, X^{6,7,8,9}) \to -(\tilde{X}^{4,5}, X^{6,7,8,9})$

• The 16 O5-planes are replaced by
$$16 \times 4$$
 O3-planes at the fixed points.

■ D9-branes and D5-branes are exchanged under T-duality on T^4/\mathbb{Z}_2 . We can T-dualize all 6 directions to map their moduli into positions of 32 D3-branes in

$$\left(\frac{T^4}{\mathbb{Z}_2} \times \tilde{T}^2\right) \middle/ I_{456789}$$

■ Scherk-Schwarz mechanism along the direction X^5 of T^2 .

• In Field Theory: Kaluza-Klein theory in $\mathbb{R}^{1,3} \times S^1$, with different boundary conditions for the bosonic and fermionic fields along the extra dimension

$$(\text{KK mass})^2 = \left(m_5 + \frac{F}{2} + a_{\alpha}^5 - a_{\beta}^5\right)^2 G^{55} M_{\text{s}}^2$$

• F = 0 for Bosons, F = 1 for Fermions.

• In the NN sector, a_{α}^5 , a_{β}^5 are Wilson lines along X^5 .

• In the T-dual picture, the string is stretched between two D3-branes α, β whose coordinates along \tilde{X}^5 are $a_{\alpha}^5, a_{\beta}^5$.

$$\implies$$
 Susy breaking scale $M = M_{\rm s} \frac{\sqrt{G^{55}}}{2}$

Massless fermions arise when

 $a_{\alpha}^{5} - a_{\beta}^{5} = \frac{1}{2}$ *i.e.* strings stretched along \tilde{X}^{5}

■ The extrema of the effective potential arise when all D3-branes sit on fixed points.

• Label the 16×4 fixed points by i, i', where $i = 1, \ldots, 16$ and $i' = 1, \ldots, 4$.

• $N_{ii'}$ (or $D_{ii'}$) = Number of D3-branes T-dual to the D9-branes (or D5-branes) located on the O3-plane at corner i, i'.

The massless spectrum at tree level contains the Bosonic parts of

• $\mathcal{N} = 2$ vector multiplets in $\prod_{i,i'} U(N_{ii'}/2) \times U(D_{ii'}/2)$

 \bullet hypermultiplets in antisymmetric \oplus antisymmetric of each $U\text{-}\mathrm{factor}$

• bifundamentals of each pair $U(N_{ii'}/2) \times U(D_{ji'}/2)$.

Fermionic parts of hypermultiplets in bifundamentals

Masses from the effective potential

 $\blacksquare \mathcal{V}$ is the vacuum to vacuum amplitude. At one loop: Torus, Klein bottle, annulus and Möbius strip.

■ It is expressed in terms of the one-loop partition functions, which are known for arbitrary marginal deformations of the

• Open string moduli in the NN and DD sectors (D3-brane positions)

• Closed string moduli G_{IJ} in NS-NS sector (internal metric)

 $\mathrm{NN}: \ a_{\alpha}^{I} = \langle a_{\alpha}^{I} \rangle + \epsilon_{\alpha}^{I}, \qquad \mathrm{DD}: \ \tilde{a}_{\alpha}^{I} = \langle \tilde{a}_{\alpha}^{I} \rangle + \tilde{\epsilon}_{\alpha}^{I}, \qquad \langle a_{\alpha}^{I} \rangle, \langle \tilde{a}_{\alpha}^{I} \rangle \in \left\{ 0, \frac{1}{2} \right\}$

$$\begin{aligned} \mathcal{V} &= M^4 \sum_n \frac{\mathcal{N}_{2n+1}(\epsilon, \tilde{\epsilon}, G)}{|2n+1|^5} + \mathcal{O}\left((M_{\rm s}M)^2 e^{-2\pi c \frac{M_{\rm s}}{M}} \right) \\ &= M^4 (n_{\rm F} - n_{\rm B}) \xi + \frac{M_{\rm s}^2}{2} \left(\epsilon_r^I \, \mathcal{M}_r^{2IJ} \, \epsilon_r^J + \tilde{\epsilon}_r^I \, \tilde{\mathcal{M}}_r^{2IJ} \, \tilde{\epsilon}_r^J \right) + \cdots \end{aligned}$$

where r runs over the independent positions.

• No tadpole \implies Extremum

$$\mathcal{V} = M^4 (n_{\rm F} - n_{\rm B}) \xi + \frac{M_{\rm s}^2}{2} \left(\epsilon_r^I \,\mathcal{M}_r^{2IJ} \,\epsilon_r^J + \tilde{\epsilon}_r^I \,\tilde{\mathcal{M}}_r^{2IJ} \,\tilde{\epsilon}_r^J \right) + \cdots$$

• For \tilde{T}^4/\mathbb{Z}_2 positions

$$\mathcal{M}_r^{2IJ} \propto \left(N_{i(r)i'(r)} - N_{i(r)i'(r)} - 2 \right) G^{IJ} M^2$$

where $N_{i(r)i'(r)}$ is the number of D3-branes at the stack where the position oscillates, and $N_{i(r)i'(r)}$ is that in front, along the Scherk-Schwarz direction.

• For
$$\tilde{T}^2$$
 positions:
 $\mathcal{M}_r^{2IJ} \propto \left(N_{i(r)i'(r)} - N_{i(r)\hat{i}'(r)} - 2 + \frac{1}{4} \sum_j \left(D_{ji'(r)} - D_{j\hat{i}'(r)} \right) \right) (>0) M^2$

 $\blacksquare \text{ When all } \epsilon_r^I, \, \tilde{\epsilon}_r^I \text{ are stabilized at } 0,$

$$\mathcal{V} = M^4 (n_{\rm F} - n_{\rm B}) \xi + \mathcal{O}\left((M_{\rm s} M)^2 e^{-2\pi c \frac{M_{\rm s}}{M}} \right)$$

 \implies G^{IJ} present in the mass terms disappear: Flat directions !! (Up to exponentially suppressed terms.) Except $G^{55} = 2M^2$. ■ To see how closed string moduli can be stabilized: Use of the Heterotic/Type I duality (weak/weak duality for $d \leq 5$)

• $(G+C)_{IJ}$ is mapped to $(G+B)_{IJ}$, where B_{IJ} is the antisymmetric tensor.

• There are massive states charged under $U(1)^6$ associated to T^6

♦ Their masses depend on $(G + B)_{IJ}$

 \diamond and vanish at special values of $(G+B)_{IJ},$ thus enhancing $U(1)^6$ to a non-Abelian group.

 \diamond Around these points, $n_{\rm B}$ increases, $\mathcal{V}_{\rm Het}$ decreases

 \implies Some of the $(G+B)_{IJ}$ are stabilized there.

• Their $U(1)^6$ charges are the winding numbers.

 \implies In Type I, these winding states are D1-branes.

 \implies Non-perturbative effects can stabilize $(G + C)_{IJ}$. Otherwise, flat directions (up to exponentially suppressed terms).

Masses from anomaly cancellation

• On T^4/\mathbb{Z}_2 , the $\mathcal{N}=1$ theory in 6 dim is chiral

$$\prod_{i=1}^{16} U(N_i/2) \times U(D_i/2) , \text{ rank} = 32 , \text{ has anomalous } U(1)$$
's

The twisted sector contains, localized at each of the 16 fixed points,

- RR 4-forms $C_4^i \xrightarrow{\text{Hodge}} 0$ -forms C_0^i
- 3 NS-NS real scalars

10

■ Anomaly cancellation requires tree level couplings between these forms and the 32 U(1) field strengths dA_a ,

[Berkooz, Leigh, Polchinski, Schwarz, Seiberg, Witten, '96]

17/23

$$\implies \sum_{i} \int \left(C_0^i + \sum_a c_a^i A_a \right) \wedge * \left(C_0^i + \sum_b c_b^i A_b \right)$$

where c_a^i depend on the distribution of the D5-branes on the fixed points, and the distribution of the T-dual of the D9-branes.

 \blacksquare If there are 16 (or more) U factors,

- 16 of them become SU,
- all C_0^i are "eaten." All twisted scalars massive.
- $\implies T^4/\mathbb{Z}_2$ cannot be deformed to K3.

■ In four dimensions, the components along T^2 of the massive U(1)'s are automatically stabilized.

Masses from 2-point functions

• Strings stretched between stacks $N_{ii'}$ and $D_{ji'}$

 \implies massless scalars in bifundamentals of $U(N_{ii'}/2) \times U(D_{ji'}/2)$.

■ Open string analogue of closed string twisted states: We don't know the partition function and \mathcal{V} for arbitrary vev. [Coudarchet, H.P, 2021]

 \Rightarrow 2-point functions of "Boundary Changing Vertex Operators" $_{19/23}$

■ The vertex operator in ghost picture -1 involves "boundary-changing operators" σ^{67} , σ^{89} for the directions 6,7 and 8,9 $V_{-1}^{\alpha_0\beta_0}(z,k) = \lambda_{\alpha_0\beta_0} e^{-\phi} e^{ik\cdot X} e^{\frac{i}{2}(H_{67}-H_{89})} \sigma^{67}\sigma^{89}$

In ghost picture 0, $V_0^{\alpha_0\beta_0}(z,k)$ involves ρ^{67} , ρ'^{67} and ρ^{89} , ρ'^{89}

$$Z \equiv \frac{X^{6} + iX^{7}}{\sqrt{2}} , \qquad \partial Z(z)\sigma^{67}(w) \sim (z - w)^{-\frac{1}{2}}\rho^{67}(w) + \text{finite}$$
$$\partial \bar{Z}(z)\sigma^{67}(w) \sim (z - w)^{-\frac{1}{2}}\rho'^{67}(w) + \text{finite}$$
$$Z = Z_{cl} + Z_{qu} \implies \langle \sigma(z_{1})\sigma(z_{2}) \rangle = \sum_{\text{Instanton}} e^{-S_{cl}} \langle \sigma(z_{1})\sigma(z_{2}) \rangle_{qu}$$

where $\langle \sigma(z_1)\sigma(z_2)\rangle_{qu} = C(\tau) \times (\text{function of } z_1, z_2, \tau)$

• is computed by the "Stress-Tensor Method." [Atick, Dixon, Griffin, Nemeschansky, '88], [Abel, Schofield, '04]

• $C(\tau)$ is an "integration constant" determined by taking the limit $z_1 - z_2 \rightarrow 0$, which reduces to the partition function.

Because ρ is created by acting with $\partial Z = \partial (Z_{cl} + Z_{qu})$ on σ

$$\langle
ho(z_1)
ho'(z_2)
angle_{
m qu} = \langle \sigma(z_1)\sigma(z_2)
angle_{
m qu} \left[\mathcal{O}(R^2_{6,7,8,9}) + \mathcal{O}(lpha')
ight]$$

 \blacksquare Take a limit so that KK modes along the Scherk-Schwarz direction X^5 dominate

$$\alpha' \to 0$$
, $R_I = \sqrt{\alpha'} r_I \to 0$, $\frac{\alpha'}{R_I} = \sqrt{\alpha'} \frac{1}{r_I} \to 0$, $I = 4$ and 6,7,8,9

i.e. string oscillators, KK and windings modes in the directions 4 and 6,7,8,9 are infinitely massive.

■ Integrate over the position of the vertices and length of the annulus and Möbius strip

$$(\mathcal{M}^{\alpha_0\beta_0})^2 \propto \left[(N_{ii'} - N_{ii'} - 2) + (D_{ji'} - D_{ji'} - 2) \right] M^2 ,$$

where i, i' (or j, i') is the fixed point separated from the fixed point i, i' (or j, i') along the Scherk-Schwarz direction.

Tachyon free models at one loop

■ There are $\sim 10^{11}$ inequivalent distributions of the D3-branes on the fixed points.

- Computer scan \implies Only 2 have $n_{\rm F} = n_{\rm B}$ and are tachyon free
 - The anomaly free gauge groups are
 - (a): $U(1) \times SU(2)_{\text{DD}} \times SU(7)_{\text{DD}} \times SU(5)^2_{\text{NN}}$
 - (b) : $U(1) \times SU(3)_{\text{DD}} \times SU(6)_{\text{DD}} \times SU(5)^2_{\text{NN}}$
 - Half of the branes are rigid in 6 dimensions.
 - All dynamical positions in 4 dimensions are massive.

 \bullet All closed string twisted moduli are massive. T^4/\mathbb{Z}_2 cannot be deformed.

• Flat directions at one loop: Closed string moduli $(G + C)_{IJ}$, M, dilaton.

■ Type I models realizing $\mathcal{N} = 2 \rightarrow \mathcal{N} = 0$ in 4 dimensions can have all open string moduli stabilized at one loop.

■ Thanks to a massless Bose/Fermi degeneracy (at tree level), the supersymmetry breaking scale M is a flat direction (at one loop), up to exponentially suppressed corrections.

 \blacksquare This may be good: Can M and the dilaton be stabilized at weak coupling by taking into account in the Effective Potential

one loop level
$$\mathcal{O}(e^{-2\pi c \frac{M_s}{M}})$$
 + two loops ?

Contributions to the potential of D1-brane becoming massless can stabilize some of the untwisted closed string moduli $(G + C)_{IJ}$.