Constructions of Non-SUSY String Vacua With Vanishing Cosmological Constant

KEK-TH (Zoom) 2022/12/9

Ritsumeikan Univ. Yuji Sugawara

Introduction

What's cosmological constant?

Cosmological const. = vacuum energy density

$$\Lambda_{1-\text{loop}} \sim \sum [1-\text{loop vacuum diagram}]$$

Cosmological Constant in String Theory

Cosmological Constant in String Theory

Modular invariance

$$Z_{\text{torus}}\left(-\frac{1}{\tau}\right) = Z_{\text{torus}}(\tau), \quad Z_{\text{torus}}(\tau+1) = Z_{\text{torus}}(\tau)$$

integration region :

'cosmological constant problem'

$\Lambda_{\rm observation} \ll M_{\rm SUSY\ breaking}^4$

We want to obtain a 'hint' to resolve this issue in string theory.

Non-SUSY with $\Lambda=0$?

Two possibilities

(1) $Z(\tau) \equiv 0$, but no supercharges exist. (2) $Z(\tau) \not\equiv 0$, but $\Lambda = 0$ (2) $Z(\tau) \not\equiv 0$, but $\Lambda = 0$ (2) $Z(\tau) \not\equiv 0$

Contents

- Introduction
- Asymmetric Orbifolds as Non-SUSY String Vacua with Vanishing CC
- Non-SUSY Vacua with Vanishing CC : Part 2
- Summary

Asymmetric Orbifolds as Non-SUSY String Vacua with Vanishing Cosmological Constant

How to break SUSY?

Orbifolding by
$$\,(-1)^{F_L}$$

 F_L : left-moving space-time fermion number

Removes massless Ramond states in the untwisted sector. (break SUSY?)

But, new massless Ramond states emerge in the twisted sector. (eventually, SUSY)

How to break SUSY?

Lightest Ramond states in the twisted sectors get massive. (No supercharge can appear.)

SUSY breaking

Non-SUSY Model with $\Lambda=0$

Non-SUSY string vacua (type II) with vanishing I-loop cosmological constant

[Kachru, Kumar, Silverstein 1998], [Kachru, Silverstein 1998], [Kachru, Silverstein 1998]

Asymmetric orbifold defined by the orbifold group:

$$G = \langle f, g \rangle$$
 f, g do not commute.
Non-abelian orbifold

However, for instance,

The I-loop cosmological constant (torus partition function) strictly vanishes.

Bose-fermi cancelation without SUSY

Clever, but looks complicated...

Closely related studies :

[Harvey 1998]

[Shiu, Tye 1998]

[Blumenhagen, Gorlich 1998]

[Angelantonj, Antoniadis, Forger 1999]

[Aoki, D'Hoker, Phong 2003]

.

Non-SUSY Model with $\Lambda=0$

My studies

[Satoh, Y.S, Wada 2015]

[Y.S, Wada 2016]

[Satoh, Y.S, Uetoko 2017]

[Y.S, Uetoko 2018]

[Aoyama, Y.S 2020]

[Aoyama, Y.S 2021]

Non-SUSY Model with $\Lambda = 0$

[Satoh, Y.S, Wada 2015] [Y.S, Wada 2016]

- Realized by simpler orbifold actions. (only single generator in the orbifold group)
- Each building block $Z_{(a,b)}(\tau)$ separately vanishes. (bose-fermi cancellation in each sector)

[Satoh, Y.S, Uetoko 2017] [Y.S, Uetoko 2018]

• Extensions to open string sector.

Non-SUSY Model with $\Lambda=0$

[Aoyama, Y.S 2020] (type II)

[Aoyama, Y.S to appear] (hetero)

- Asymmetric orbifolds of Gepner models (first attempt of non-toroidal model)
- Each building block Z_(a,b)(τ) does not necessarily vanish.
 (bose-fermi cancellation among the different twisted sectors)

Non-SUSY Model with $\Lambda=0$

Nevertheless, we cannot construct the space-time supercharges as well-defined conserved quantities on the world-sheet.

Crucial point :

The sector which can contain the candidates of space-time supercharges is twisted w.r.t both the left and right movers, while the conserved charges should be chiral operators.

Non-SUSY Vacua with Vanishing Cosmological Constant : part 2

[Satoh, Y.S 2022]

Non-SUSY Model with $\Lambda=0\,$: part 2

Two possibilities

(1) $Z(\tau) \equiv 0$, but no supercharges exist.

(2) $Z(au) ot\equiv 0$, but $\Lambda=0$

no bose-fermi cancellation

Non-SUSY Model with $\Lambda=0\,$: part 2

It seems very difficult to construct the string vacua with such property...

[Moore 1987] `Atkin-Lehner symmetry'

It is possible to construct such vacua in particle theories with infinite number of mass spectra.

Non-SUSY Model with $\Lambda=0\,$: part 2

[Satoh, Y.S 2022]

Start with some SUSY string vacuum \mathcal{M}_0

'SS-type' compactification by $\, oldsymbol{g} := g \otimes \mathcal{T}_{2\pi\epsilon} \,$

g does not commute with any supercharges

$$\mathcal{T}_{2\pi\epsilon}$$
 : shift operator

'particle theory' $\mathcal{M}[\epsilon]$

orbifold projection without twisted sectors

lpha SUSY is recovered when taking $\ \epsilon \longrightarrow \infty$

$$Z_{\mathcal{M}[\epsilon]}(\tau) \propto \sum_{m \in \mathbb{Z}} \operatorname{Tr}_{\mathcal{M}_{0}} \left[g^{m} q^{L_{0} - \frac{c}{24}} \overline{q^{\tilde{L}_{0} - \frac{c}{24}}} \right] \neq 0$$

no bose-fermi cancellation

$$\Lambda_{\mathcal{M}[\epsilon]} \equiv \frac{1}{V_{D}} \int_{\mathfrak{S}} \frac{d^{2}\tau}{\tau_{2}^{2}} Z_{\mathcal{M}[\epsilon]}(\tau)$$

$$= \int_{0}^{\infty} \frac{d\ell}{\ell} (2\pi\alpha'\ell)^{-\frac{D}{2}} \sum_{i \in \mathcal{H}[\mathcal{M}[\epsilon]]} D(m_{i}) e^{-2\pi\ell \frac{\alpha'}{2}m_{i}^{2}}$$
(*D* : dim of non-compact space-time)

$$Particle$$

We require the conditions (* *) for \mathcal{M}_0 , g

$$\sum_{a,b} Z_{(a,b)}(\tau) = 0, \quad \text{while } \sum_{b} Z_{(0,b)}(\tau) \neq 0,$$

+ some physically reasonable conditions

Under the conditions
$$(* *)$$
,
we can prove $\lim_{\epsilon \to +0} \Lambda_{\mathcal{M}[\epsilon]} = 0$, for $\forall D \ge 1$

More precisely,
$$\Lambda_{\mathcal{M}[\epsilon]} \sim \epsilon^{2D} M^D_{\mathrm{SUSY}} \sim \epsilon^D M^D_s$$

($M_{\mathrm{SUSY}} \sim \epsilon^{-1} M_s$)

while one naively estimates

$$\Lambda_{\mathcal{M}[\epsilon]} \sim M_{\mathrm{SUSY}}^D \sim \epsilon^{-D} M_s^D$$

Crucial point : 'Polchinski's trick' [Polchinski 1986] $\int_{\mathcal{S}} \frac{d^2 \tau}{\tau_2^2} \sum_{m \in \mathbb{Z}} Z_{(0,m)}(\tau) = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} \sum_{w,m \in \mathbb{Z}} Z_{(w,m)}(\tau)$ (assume $Z_{(0,0)}(au)\equiv 0$) S F

The concrete examples satisfying the conditions (* *) have been made up based on the asymmetric orbifolds of SUSYstring vacua associated to the Lie algebra Lattice (Englert Neveu Lattice).

[Satoh-Y.S. 2022]

Higher loop corrections to CC?

We expect the similar suppressions by powers of ϵ in the higher loop contributions to CC, based on the modular argument for the Riemann surfaces with higher genera. (\rightarrow should be strictly confirmed)

Summary

• Non-SUSY string vacua with $Z(\tau) \equiv 0$

can be constructed by asymmetric ('non-geometric') orbifold.

toroidal and non-toroidal models. (asymmetric orbifolds of Gepner models.)

• Vanishing CC with $Z(\tau) \not\equiv 0$

seems difficult to realize in string theory, but it could be possible as particle vacua.

(further studies needed : higher loop corrections, interactions, ...)

Thank you very much for listening.