

NanoBridge FPGA

Toshitsugu Sakamoto *NanoBridge Semiconductor Inc. (NBS)

Content

- Introduction & NanoBridge-FPGA
 - Energy efficient computing
 - Operation principle of NanoBridge
 - Schematic diagram of NanoBridge-FPGA
- Nonvolatile SoC-FPGA
 - Provides low power and high functionality for IoT devices
 - Accelerator of convolutional neural network (CNN)
 - 28nm NB-FPGA as accelerator
 - NanoBridge for accelerator and code ROM
- Radiation tolerance of NanoBridge
 - Demonstration of NanoBridge-FPGA on orbit
- Conclusion

Enhancement by logic architecture

Switch over logic

Switch over logic

• Integrate in BEOL (Backend-of-line) of LSI

NanoBridge[®] (or Atom switch)

- Resistive change memory (ReRAM)
- Nanometer-scale Cu bridge forms via electrochemical reaction
 - High ON/OFF ratio ~ 2k/200M Ω
 - Weak temperature dependence, Small Capacitance ~ 0.15fF
 - Reprogram cycle > 10³
 - No soft error (radiation tolerant)

Programming properties

- Program/Erase evaluation using 128kb-TEG
 - Program/Erase pulse : 1µsec or 200nsec
 - Voltage : 2V to 2.5V

Origin of current path

• Resistive switching is attributed to formation of Cu bridge.

KEK workshop 2022

Page : 8

Temperature dependence

• nFET(Red) vs NanoBridge (Blue)

FPGA structure

• FPGA fabric consist of Configurable logic block (CLB)

Page : 10

CLB for NB-FPGA

- 4 Basic logic elements (BLE)*
- BLE has 4-input LUT and DFF
- NanoBridge crossbar occupies large portion in CLB layout

SB:switch box, CB:Connection block

*X.Bai et al., VLSI Symo., 2015.

EDA tools for NB-FPGA

- Generated Configuration data from RTL code
 - STA predicts NB-FPGA performance, allowing circuits to be optimized

KEK workshop 2022

Comparison with commercial low-power FPGA

16b-ALU/Signal-generator are mapped using 332 LUT

40nm SRAM-FPGA*

*http://www.latticesemi.com/Products/FPGAandCPLD/iCE40.aspx

Page : 13

Power comparison

KEK workshop 2022

Summary of comparison

	SRAM-FPGA	NB-FPGA
Configuration switch	SRAM/Pass Tr.	NanoBridge
Process node	40nm	40nm
# of LUTs	12.8k	6.4k
Max. speed@1.1V	28MHz	56MHz
Active energy per cycle@33MHz	66pJ	33pJ

Content

- Introduction & NanoBridge-FPGA
 - Energy efficient computing
 - Operation principle of NanoBridge
 - Schematic diagram of NanoBridge-FPGA
- Nonvolatile SoC-FPGA
 - Provides low power and high functionality for IoT devices
 - Accelerator of convolutional neural network (CNN)
 - 28nm NB-FPGA as accelerator
 - NanoBridge for accelerator and code ROM
- Radiation tolerance of NanoBridge
 - Demonstration of NanoBridge-FPGA on orbit
- Conclusion

System-on-Chip (SoC) with ASFPGA

- Provide advanced functionality and computing power in IoT
 - Flexibility : User functions assigned to either CPU or Accelerator, depending on its computation power and functionality.
 - Reduced design complexity by using high-level logic synthesis

• Component

- Processor & Code ROM
- RAM for working memory (Flame data, Weight, etc.)
- Input / output serial port (SPI, LVDS, GPIO, etc.)
- BUS Inter-connect
- NanoBridge-FPGA
- PMU

(Power Management Unit)

CPU ↔ PMU NB-NVM ↔ NB-FPGA SPI/UART ↔ BUS GPIO ↔ DP-SRAM

Non-volatile SoC-FPGA

Deep Learning (DL) in IoT

- DL applications to IoT
 - Image/Video (Classification, object detection, scene understanding, traffic sign, etc.)
 - Natural Language (speech recognition, translation, etc.)
- Convolutional Neural Network (CNN) requires computational power
 - CNN training at cloud, CNN inference at IoT devices
- Challenges for CNN inference in IoT devices
 - Arithmetic operations / memory access
 - Power consumption / heat dissipation
 - → Accelerator with high energy efficiency

CNN accelerator comparison

- FPGA is more energy-efficient for CNN inference.
 - Benchmark : Binarized CNN (VGG16)
- Advantages of FPGA
 - No bottleneck in memory access
 - Highly energy-efficient bitwise operation
 - Massive parallel operations

Architecture	CPU (Baseline)	GPGPU	SRAM-FPGA
Device	ARM Cortex-A57	Maxwell GPU	Zynq7020
Clock Freq.	1.9 GHz	998 MHz	144 MHz
Memory	16 GB eMMC Flash	4GB LPDDR4	4.9Mb BRAM
Execution time (ms) (fps(/sec))	4,210 (0.23)	27.23 (36.7)	2.37 (421.9)
Power (W)	7	17	2.3
Efficiency (fps/W)	0.032	2.2	182.6

中原啓貴,人工知能 33巻 1号 (2018)

Power Reduction on IoT Devices

Issue 1. Processing by CPU has high latency
 →Processing time shortened by executing on FPGA
 Issue 2. <u>High leakage during standby state</u>
 → Nonvolatile FPGA power-gated by MPU

NanoBridge in FPGA & NVM

• NanoBridge for memory cell in NVM and routing switch in FPGA

Low power NVM

- Low-power read operation
 - Large ON/OFF conductance ratio : Sense amp free low operation voltage (down to 0.45V)
 - Read energy below 0.58pJ at 1.05V
 - 11nsec read access at 1.05V

CLB area shrink

- Crossbar area : -75%
 - Depopulated crossbar achieves area saving
- Logic block area : -70%

R.Nebashi et al., VLSI Symposium, 2018

FPGA specification

• Largest number of LUTs among FPGAs using novel nonvolatile memories and switches

Process	28nm CMOS with 9 metal
# of LUTs	171k
# of ASs	173 Mb
Block RAM	3.2 Mb
PLL	5
DSP	648
FPU	2
GPIO	240
LVDS	16
Core voltage	1.05 V
IO voltage	1.8 V

R.Nebashi et al., FPL, 2020

Content

- Introduction & NanoBridge-FPGA
 - Energy efficient computing
 - Operation principle of NanoBridge
 - Schematic diagram of NanoBridge-FPGA
- Nonvolatile SoC-FPGA
 - Provides low power and high functionality for IoT devices
 - Accelerator of convolutional neural network (CNN)
 - 28nm NB-FPGA as accelerator
 - NanoBridge for accelerator and code ROM
- Radiation tolerance of NanoBridge
 - Demonstration of NanoBridge-FPGA on orbit
- Conclusion

Radiation Environments

*https://pc.watch.impress.co.jp/docs/news/event/168219.html (D.C. Matthews et al., "NSEU impact on commercial avionics", IRPS 2009.)

Page : 26

Radiation Induced Effect of Si-LSI

- Single Event Effect (SEE)
 - Soft error by single high-energy particle (Heavy Ions, Neutron, Proton)
 - Single event upset (SEU)
 Bit flip in SRAM, Flip-flop
 - Single Event Latch-up (SEL)-> Hard error
 - Single Event Transient (SET)
- Total Ionizing Dose Effect (TID)
 - Hard error by accumulation of Gamma-ray
 - Induced fixed charge in MOS
 - CMOS, DRAM
- Displacement Damage Dose (DDD)
 - Hard error by large amount of Neutron
 - Displacement in lattice atom

SEE (Single event effect)

Large amount of radiations

TID (Total ionizing dose effect)

Radiation harden

- SRAM/Flash :
 - Date 0/1 is defined by Charge
 - Affected by charge induced in Si substrate
- NanoBridge :
 - ON/OFF states are defined by physical metallic wire
 - not affected by induced charge

Summary of experimental results

Effect	Radiation	Source	Energy	Dose	DUT	Active	Judge
SEU	Neutron	Acc./Be	2MeV	3.6e11	NB-FPGA	Dynamic	ОК
SEU	Neutron	Acc./Be	2MeV	1.2e12	NB-FPGA	Static	ОК
SEU	Heavy lon	Cf-252	30 MeV/cm ² /mg	2.7e5	NB-FPGA	Dynamic	ОК
SEU	Heavy lon	Acc. /Xe	68.9 MeV/cm²/mg	2e7	NB-FPGA	Dynamic	ОК
SEU	α-ray	Am	5.4MeV	1.1e8	NB-FPGA	Dynamic	ОК
TID	Gamma- ray	Co60	1MeV	5kGy	NanoBridge	Static	ОК
TID	Gamma- ray	Co60	1MeV	10kGy	NB-FPGA	Static	Static current increase
DDD	Neutron	Nuclear reactor	<2MeV	1e14	NanoBridge	Static	ОК

K.Ueno et al., IEEE NSS 2021

T.Sakamoto et al., Memrisys 2021 Page : 29

Experimental Results in RAPIS-I

• No error detected

- Soft error detection circuit
 Operation time > 3,300 hours
- Image total : 280 pics.

DUT Type	Scale	Duration (hours)	SEU counts
BRAM	2kbit	859	0
AS-Chain1	96 CLBs	2,254	0
AS-Chain2	368 CLBs	230	0
DFF/AS-Chain	468 CLBs	45	0

Conclusion

• Low power of NanoBridge-FPGA demonstrated

- NB-FPGA with 171k LUT for CNN accelerator
 - Depopulated crossbar achieves 75% area saving
 - CNN can be applied to 28nm NB-FPGA
- Radiation tolerance of NanoBridge-FPGA
 - Free from single event upset (SET) & Total ion dose effect (TID)
 - Successful 1 year operation in space

Acknowledgements

This work is supported by New Energy and Industrial Technology Development Organization (NEDO). Project No. : JPNP16007.

This work is also supported by Tsukuba Innovation Arena (TIA) and National Institute of Advanced Industrial Science and Technology (AIST).

Radiation evaluation is done by K. Takeuchi of JAXA and K. Ueno of KEK.

Project member : R. Nebashi, N. Banno, M. Miyamura, X. Bai, K. Funahashi, K. Okamoto, N. Iguchi, H. Numata, T. Sugibayashi, and M. Tada

