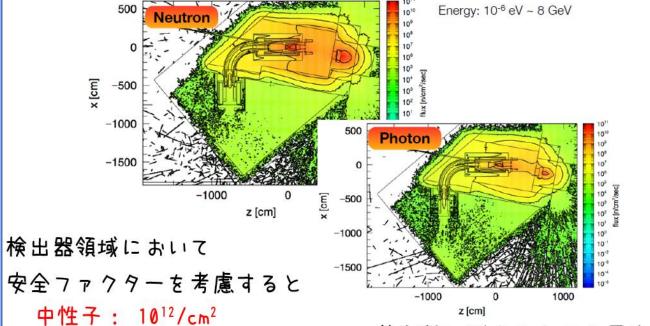
ナノブリッジFPGAの加速器実験応用検討

2022. 8. 10

上野 一樹 (大阪大)

耐放射線エレキ研究会2022


もくじ

- モチベーション
- ・ナノブリッジFPGA
- 放射線照射試験
- ・今後に向けて

(個人的) モチベーション

COMET実験における放射線量

• PHITSによる計算for Phase-I実験

ガンマ線: 1 kGy (200days) の放射線に耐えられる必要あり

この結果をベースに検出器・エレキパーツ等の対策を考えた

COMET Phase-II実験はさらに 放射線量が厳しい

早めに対策をうっておきたい

(これまでの対策については 吉田氏発表のとおり)

某セミナースライドより

将来に向けて

- COMET Phase-IIにおいてはさらなるビームの 大強度化を予定
- ぼちぼち手を打ちはじめておいた方が良い
- (他の実験でも同じような問題はある)

一例として・・・

ナノブリッジFPGAの応用検討

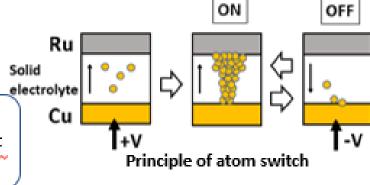
ナノブリッジFPGA

2. Atom switch-based FPGA (AS-FPGA)

Atom switch (AS)

Conductive bridge is formed in polymer solid electrolyte between inert Ru and active Cu electrodes.

Specification


resistances : ON/OFF \sim 2k/200M Ω

of rewriting times: >103

retention time: > 10 years

Switch capacitance : < 0.2 fF

SEU free in principle

AS-FPGA

AS was successfully applied in FPGA for its routing switch and look-up tables [1,2]. AS FPGA was already irradiated with heavy ion and pulsed laser, and the SEU tolerance was confirmed [3].

For the accelerator experiment,

more studies with the higher radiation environment are needed.

Photographs of AS-FPGA

ltem	Spec.
LUT	33,792
Flip Flop	33,792
BRAM	768
SRAM size	1,536 kbit
rated vol.	1.1V
IO vol.	1.8V
AS bit	50 Mbit
process	40nm

Typical spec. of AS-FPGA

NanoBridge FPGA

- Features
 - Rad-hard (error rate < 1/100)
 - Low power consumption (< 1/10)
- Current status
 - · irradiation test with heavy ion and pulsed laser
 - verification test on satellite

We need to confirm feasibility.

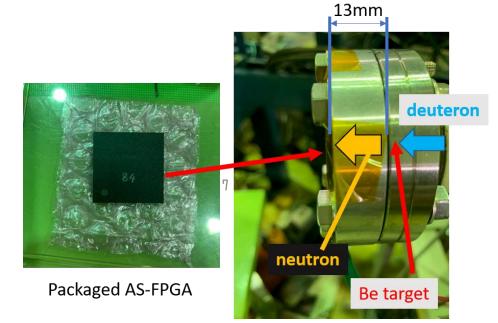
- tolerance to very high radiation level
- · usability
- etc. . .

Irradiation tests

Neutron irradiation tests

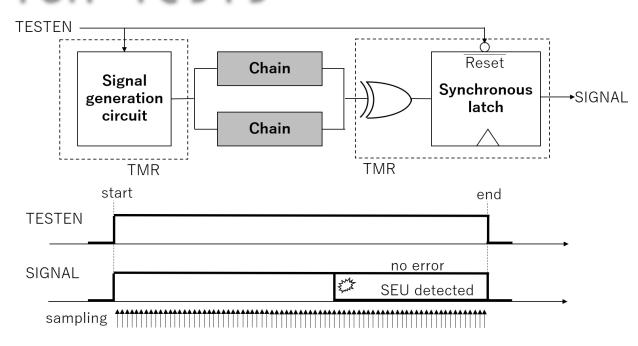
Tandem accelerator @ Kobe Univ.

- Beam: 3 MeV deuteron
- Target : Be (ϕ 20 mm)
- Neutron energy: 2 MeV (<7 MeV)
- Flux: 4. 9×10^6 Hz/cm² @ 10cm from target (beam current = 1 μ A)


Reactor @ KUR

- Method: Pneumatic Tube
- Rated thermal power: 5 MW
- Neutron energy: broad
- Flux : $> 10^{13} \text{ Hz/cm}^2$

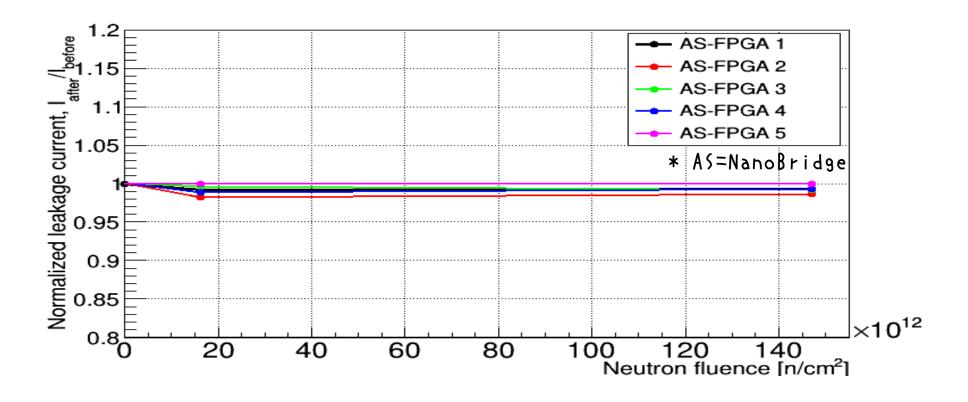
SEU and DDD measurements


Tandem facility

Neutron irradiation tests

SEU counts were measured with 4 types of chains.

NO SEUs were observed in NB!

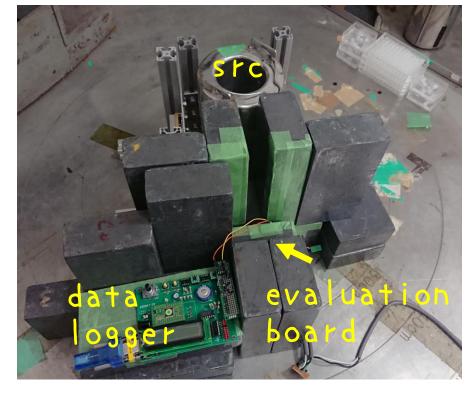

Schematic view of evaluation circuit for SEU

Results of SEU counts

DUT type	Scale	Neutron fluence(n/cm²)	SEU counts
SRAM	2 kbit	1.6 x 10 ¹¹	5
NB1	96 CLBs	3.6 x 10 ¹¹	0
NB2	368 CLBs	1.7 x 10 ¹¹	0
DFF+AS	468 CLBs	1.5 x 10 ¹¹	0

Neutron irradiation tests

Leakage current was measured before/after irradiation.

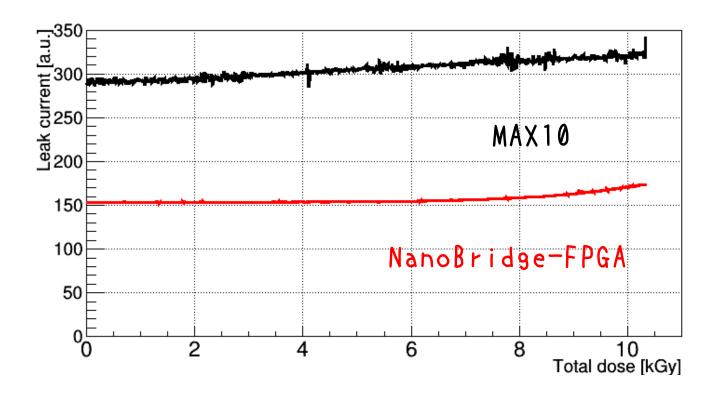

NO DDDs were observed!

Irradiation tests

gamma-ray irradiation tests

RI Center @ Tokyo Institute of Technology & QST

- Src : Co-60
- Dose rate: 500 Gy/h
- Total dose: 10 kGy

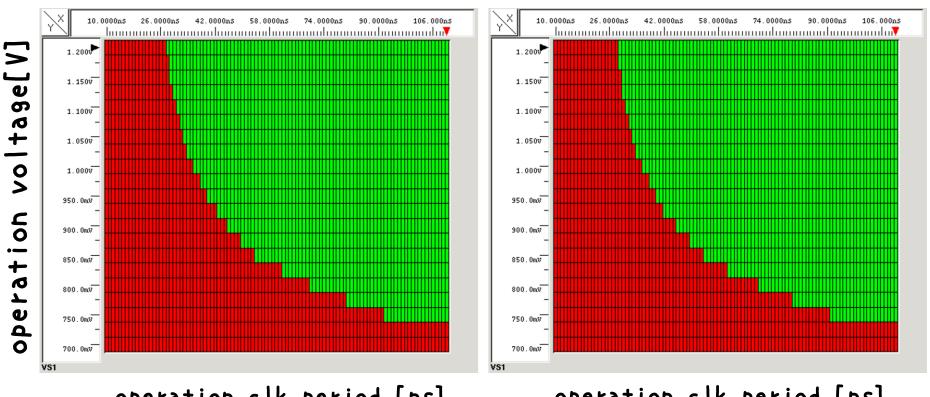


Experimental setup

TID measurements

gamma-ray irradiation tests

Leakage current were measured during irradiation.



NO change was seen up to 6 kGy.

After 6 kGy, leakage current increased slightly due to degradation in CMOS.

gamma-ray irradiation tests

Shmoo plot before irradiation after 10 kGy irradiation

operation clk period [ns]

operation clk period [ns]

NO change in signal delay was seen after 10 kGy irradiation.

Future works

It was found that NB-FPGA had potential to use for our experiment.

- (Irradiation tests with higher level)
- · Construction of evaluation board
- and more. . .
 - · usability
 - speed
 - etc...

Let me know if you are interested in the development.

まとめ

- ・将来に向けたrad-hard FPGAの検討
- ・ナノブリッジFPGAの放射線耐性を調査
- •今後開発を進める予定

•共同で何かやりたい方募集