

View-points of Beam Commissioning of J-PARC Main Ring for Safe and Reliable Operation

Yoichi Sato, Shuei Yamada, Takaaki Yasui KEK/J-PARC WAO2023 OR18, 2023 SEP14 09:20 – 09:40

Japan Proton Accelerator Research Complex

- Operated by Japan Atomic Energy Agency (JAEA) and High Energy Accelerator Research Organization (KEK)
- Tokai, Ibaraki (0.65 million m^2)
- High Intensity Proton Accelerators
- Facilities to use the secondary beams

- LINAC (400 MeV)
- Rapid Cycling Synchrotron (RCS) (3 GeV)
 - Materials and Life Science Experimental Facility (MLF)
- Main Ring (MR) (30 GeV)
 - Hadron Exp. Facility
 - Neutrino Exp. Facility

Japan Proton Accelerator Research Complex

- Operated by Japan Atomic Energy Agency (JAEA) and High Energy Accelerator Research Organization (KEK)
- Tokai, Ibaraki (0.65 million m^2)
- High Intensity Proton Accelerators
- Facilities to use the secondary beams

- LINAC (400 MeV)
- Rapid Cycling Synchrotron (RCS) (3 GeV)
 - Materials and Life Science Experimental Facility (MLF)
- Main Ring (MR) (30 GeV)
 - Hadron Exp. Facility
 - Neutrino Exp. Facility

Main Parameters of MR

Circumference	1567.5 m	Beam abor
Injection energy	3 GeV	
Extraction energy	30 GeV	
Super-periodicity	3	RCS
harmonic	9	BT
Number of bunches	8	3-50 BT
Rf frequency	1.67 - 1.72 MHz	Injectio

TWO OPERATION MODES:

- Fast extraction mode (FX) for the neutrino experiment
- Slow extraction mode (SX) for the hadron hall experiments

Since 2010, the beam power of MR has been increased by Faster cycle, Space charge mitigation, Optics improvements, and Hardware enhancement associated with them.

Upgrade plan of MR FX (2023~)

Beam Power \propto Energy (30GeV) \times 1/T_{rep} \times # of protons.

JFY2021	515 kW	2.48 s	2.66E14 protons per pulse	-
JFY 202*	>940 kW	<1.36 s	2.66E14 protons per pulse	

of protons in a pulse extracted from synchrotron (Word Record)

 In 2021 -2022, MR major properties (RF /Magnet / Injection&FX / ...) were upgraded for Twice Faster cycle.

- We are in the way to reproduce *the 2021-Beam-Optics* first, and to make further upgrades.

In 2023 beam study, we achieved *FX 766 kW eq. 2.17E14 protons per pulse*

Staffing during Beam Operation

STAFFING to be responsible for safe beam operation	Beam Study	User Operation
Accelerator Shift Leader (SL) A person assigned from ALL Researchers/Engineers in J-PARC Accelerator Division	0	\bigcirc
Sub-Shift Leaders (Sub-SLs) out-sourcing members	0	0
Beam Commissioning Leaders (B-Comm.Ls) decide beam-conditions. Y. Sato & T. Yasui are for MR-B-CommLs.	0	
MR-Shift: Special shift only for MR operation Assigned only from MR section members. No special shift for Linac & RCS operation.	0	\bigcirc

Staffing in the control center room during MR Beam Study

You can see the control enter room in J-PARC at <u>https://www.nhk.jp/p/zero/ts/XK5VKV7V98/movie/</u> (Japan Broadcasting Corporation)

To aim higher intensity, beam loss management is important <u>to protect facility components and their maintenance capabilities</u>.

MR Beam Commissioning is to process the following steps iteratively

Observe All Components and their R&Ds associated with the strategy

- Faster cycle:

Upgrade Magnet PSs, RF cavity system, Injection/FX system, ...

- Space charge mitigation:

Upgrade RF and Inj. Schemes for Longer beam bunch

- Optics improvements:

Use limit of Magnet PSs, Add Trim-Magnetic fields, ...

Make Strategy for Higher Power Based on Beam Dynamics and Hardware capability

Prepare Beam Tunings Realize Best Beam Optics

Prepare Beam Tunings

Confirm stability of all components --- **Reproducibility is a key to success**

Magnets, RF systems, Monitors, Control systems, Data taking...

Realize Best Beam Optics

Classify the crossed relations and solve each by each

to make Stable acceleration

to Suppress beam instability

to Focus on effects from resonance lines

to Manage loss distribution

MR Beam Commissioning process

Prepare Beam Tunings

Confirm stability of all components --- Reproducibility is a key to success

Magnets, RF systems, Monitors, Control systems, Data taking...

Realize Best Beam Optics

Classify the crossed relations and solve each by each

to make Stable acceleration

to Suppress beam instability

to Focus on effects from resonance lines

to Manage loss distribution

Beam Study and User Operation have different view-points Required data and their required timing are also different for each purpose.

Continuous data

- checked immediately for Alert
- checked in every 2~5 min.

- checked immediately for Alert
- checked in every 2~5 min.
- Long-Term Trends

	MR DATA to be observed	MR Beam Study			User Operation	
			Triggered with beam shot	No trigger	Triggered with beam shot	No trigger
		Every shot	Additional data Recorded on demand	Continuous data	Every 10 shots & Last 5 shots at beam stop	Continuous data
1	BLM (3-50 BT,MR)	0	○ finer time step		0	
2	DCCT	0	○ backup system		0	
3	BT-orbit & inj. Error	0			0	
4	BPM (COD)	0			0	
5	BPM (Turn by turn)		○ optics measurement			
6	dp/p	0			0	
7	Wall current monitor		\bigcirc longitudinal invest.			
8	Mag. PS (I, dI/dt,)	0	\bigcirc further investigation		0	
9	Intra-bunch oscillation	0	○ control/study instability			
10	Beam Profile Monitors	0				
11	MPS (Mchn Prtct System), Alert			0		0
(12)	Vacuum Monitors			0		0
(13)	Radiation Monitors, Alert			0		0
(14)	Risk monitors, Alert			0		0
(15)	Environments			0		0

	MR DATA to be observed	MR Beam Study			User Operation	
			Triggered with beam shot	No trigger	Triggered with beam shot	No trigger
		Every shot	Additional data Recorded on demand	Continuous data	Every 10 shots & Last 5 shots at beam stop	Continuous data
1	BLM (3-50 BT,MR)	0	○ finer time step		0	
2	DCCT	0	○ backup system		0	
3	BT-orbit & inj. Error	0				
4	BPM (COD)	0			In MR Beam Study,	
5	BPM (Turn by turn)		○ optics measurement		MR Beam commissioning	
6	dp/p	0			leaders always care	
7	Wall current monitor		○ longitudinal invest.			
8	Mag. PS (I, dI/dt,)	0	\bigcirc further investigation		- the basic beam	
9	Intra-bunch oscillation	0	○ control/study instability		properties	
10	Beam Profile Monitors	0				
11	MPS (Mchn Prtct System), Alert			0	- safety/machine) -
12	Vacuum Monitors			0	protection alerts.	
(13)	Radiation Monitors, Alert			0		
14	Risk monitors, Alert			0		0
(15)	Environments			0		0

J-PARC

Data viewing tools

- CSS system integrates J-PARC Accelerator Status, and is good to observe
- ✓ Data Trends (go-back-capability) from Continuous data and their relationships.
- ✓ Data triggered by shot (*but not stored*) to find the accelerator status immediately.
- Archiver system also provides data with time stamps.
- Cadump store data in Shot by shot (beam triggered). Root analysis & display are used to assemble or analyze the data via cadump

Data viewing tools

CSS system has been expanded with new items after knowing **newly revealed relationships** in beam properties and accel. components

<u>Trend of MR beam power and loss attached with</u> <u>Linac dp/p trend</u>, based on their empirical relationship (via chromatic tune shift in RCS)

Helped to keep high-power operation: Sudden beam loss at BT forced us to reduce MR power.

- → Quickly found LI dp/p shift 0.03% and identified the reason came from LI klystron HV-PS#5 sudden-down
- \rightarrow Apply additional prompt-tuning to correct LI dp/p

After the issue, LI member developed LI dp/p FB system

During User Op. (March 2019)

<u>3-50BT beam orbit shifted linear in time.</u>

 \rightarrow After investigation, we found that it came from the layer-short in the coil of a bending magnet in 3-50BT.

<u>Newly added in the CSS list</u> Trend of BT-orbit & inj. errors

→ <u>Helped quick finding</u> <u>a damaged QM in BT</u> with 0.7mm orbit shit in Dec. 2019.

Data viewing scene

MR DATA to be observed 1 **BLM (3-50 BT,MR)** 2 DCCT 3 **BT-orbit & inj. Error** 4 **BPM (COD)** (5) BPM (Turn by turn) 6 dp/p $\overline{(7)}$ Wall current monitor 8 Mag. PS (I, dI/dt, ...)(9) **Intra-bunch oscillation** (10) **Beam Profile Monitors** (11) MPS (Mchn Prtct System), Alert (12) **Vacuum Monitors** (13) **Radiation Monitors, Alert** (14) **Risk monitors, Alert** (15) Environments

SL + sub-SLs + MR-shift observe the above during MR Operation

- MR Beam Commissioning Leaders
 observe the 2 monitors for Every Single Shot to check the basic beam properties.
 Also check below if there is something unexpected:
- ③ Upstream/Injection status
 ⑧ ⑨ Instability, or miss-trigger
 ⑧,①-④ Failures in components
- (5)(7)(10) Further investigations

- NO ONE can see ALL data at a glance.
- Good collaboration among the Staffs is necessary to Cover ALL Monitors

J-PARC

Summary

- \checkmark In MR, beam commissioning has been carried out to increase its beam power.
- ✓ Data-viewing tools are essential to make safe and reliable judgments on the beam and equipment environments.
- We have different view-points during Beam Study and User Operation.
 Required data and their required timing are also different for each purpose.
 Data-viewing tools have been arranged to satisfy our demands.
 - Every shot data required immediately
 - Additional data on demand
 - <u>Continuous data</u> checked in every 2~5 min. normally

- Data in every 10 shots

& last 5 shots in case of beam stop to find

- <u>Continuous data</u>

checked in every 2~5 min. normally Long-Term Trends

- ✓ We have encountered unnoticed problems sometimes, which caused troubles and accidental beam stops. As parts of counter-measures, we have updated the data-viewing tools by adding supporting items.
- ✓ MR beam commissioning is to realize 1.3 MW by JFY2028.