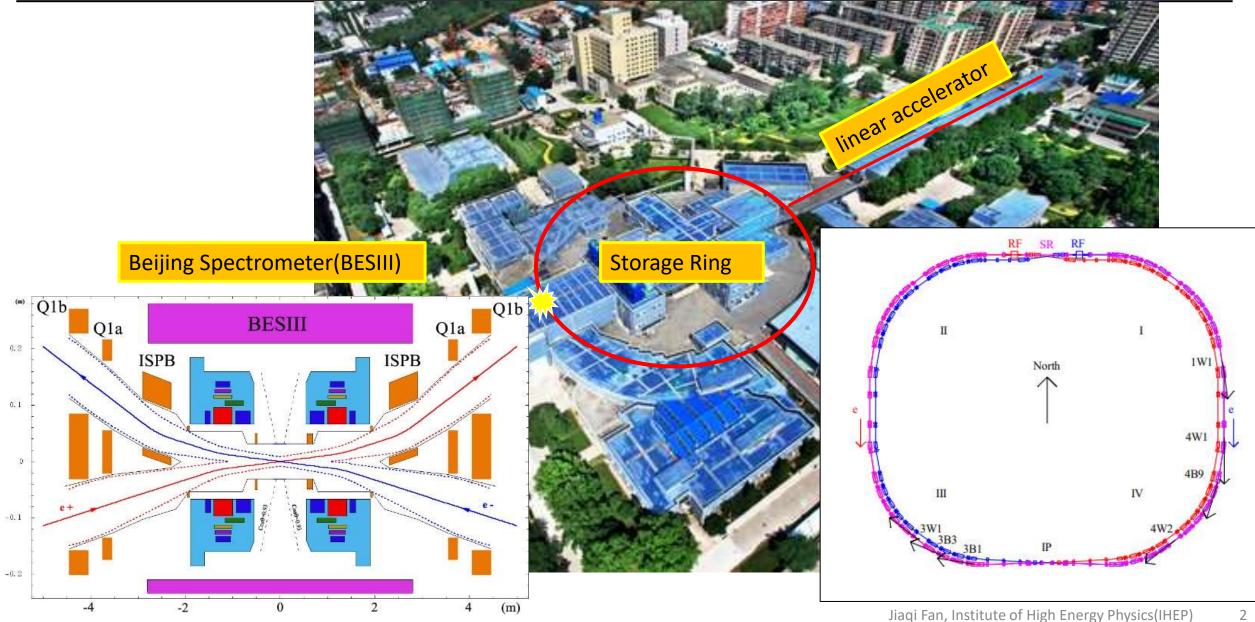


Online reinforcement learning control of beam collision at IP for BEPCII

Jiaqi Fan

How does the Machine Learning integrate with Operation? WA02023,12/09/2023

Introduction The upgrade project of Beijing Electron–Positron Collider (BEPCII)

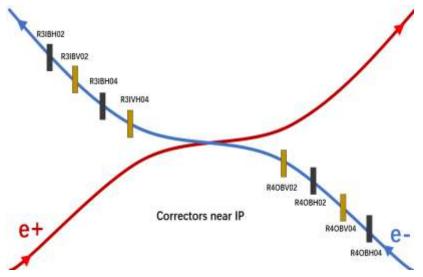


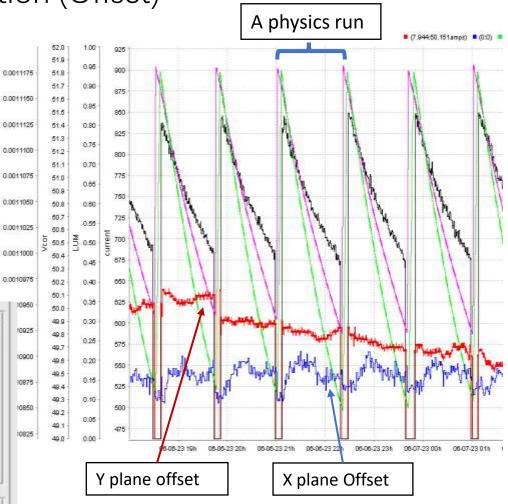
Introduction

Transverse offset in displacement and angular deviation (Offset)

- Four knobs (x, x', y, y') make of eight correctors for each ring
- The most frequently used parameters
- Always only tune the knobs of electron ring
- Tune manually
- Depends on orbit and current, need continuous optimization

Manual operation! Scan one by one!





Control method:

Feedback Method: Control beam orbits around the IP directly

Our machine: small ring、34 correctors、 no precise bpm around IP

Optimization Method: Luminosity optimization (luminosity-driven system)

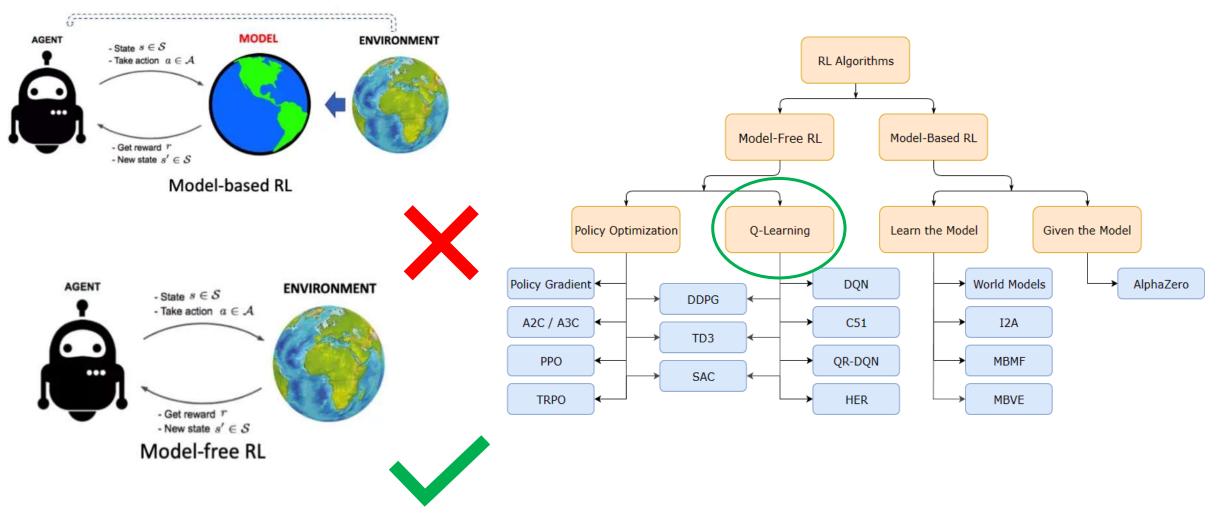
Optimization: can only find a temporary optimal result in a dynamic environment.

Machine learning:

Data-driven、model-free

Reinforcement learning

RL: Train an **Agent** to make the decision of what action to take to get more reward from environment

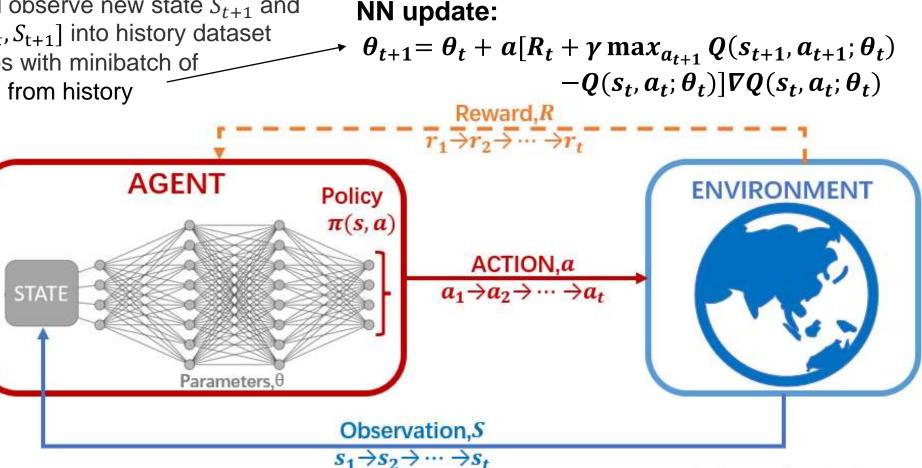


Deep Q-Network(DQN)

For each step:

- 1. Agent receive observation S_t
- 2. Calculate Q for each action on S_t
- 3. Choose the action with greatest Q, or choose random actions with a small probability
- 4. executes the action and observe new state S_{t+1} and reward R_t , sort $[S_t, A_t, R_t, S_{t+1}]$ into history dataset
- 5. Update NN each *N* steps with minibatch of $[S_t, A_t, R_t, S_{t+1}]$ sampled from history

Q(s, a) = QUALITY OF STATE/ACTION PAIR $Q_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$ $= R_t + \gamma Q_{t+1} , \gamma = 0 \sim 1$



6

Algorithm 1: DQN

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights heta

```
Initialize target action-value function \hat{Q} with weights \hat{\theta} = \theta
```

For episode =1,M **do**

observe initial state s_0

For t =, T do

With probability ϵ select a random action a_t

Otherwise select action $a_t = \max_a Q(s_t, a_t; \theta)$

```
Execute action a_t and observe reward R_t and new state s_{t+1}
```

```
Sort transition (s_t, A, s_{t+1}, R_t) in D
```

```
Sample a minibatch of transitions [S_j, A_j, R_j, S_{j+1}] from D
```

Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j \\ r_j + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; \theta_t) & \text{otherwise} \end{cases}$ Perform a gradient on $(y_j - Q(s_t, a_t; \theta_t))$ with respect to NN parameters θ Reset $\hat{\theta} = \theta$ every C steps

End For

End For

How to choose parameters? **State**: more parameters, more data to train Less parameters —— ever-changing environment **[current ,offset value ,orbit value] – 18 dims**

Action: $[x, x', y, y'] \rightarrow [a0,a1,a2,a3,a4,a5,a6,a7]$

Reward: fast response and low noise small-angle luminosity

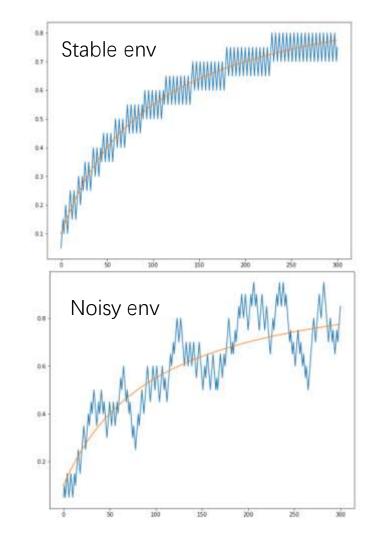
How to train our model?

Random policy search? X History data of manual operation? X Data from simulation ? X

How to get perfect history data?

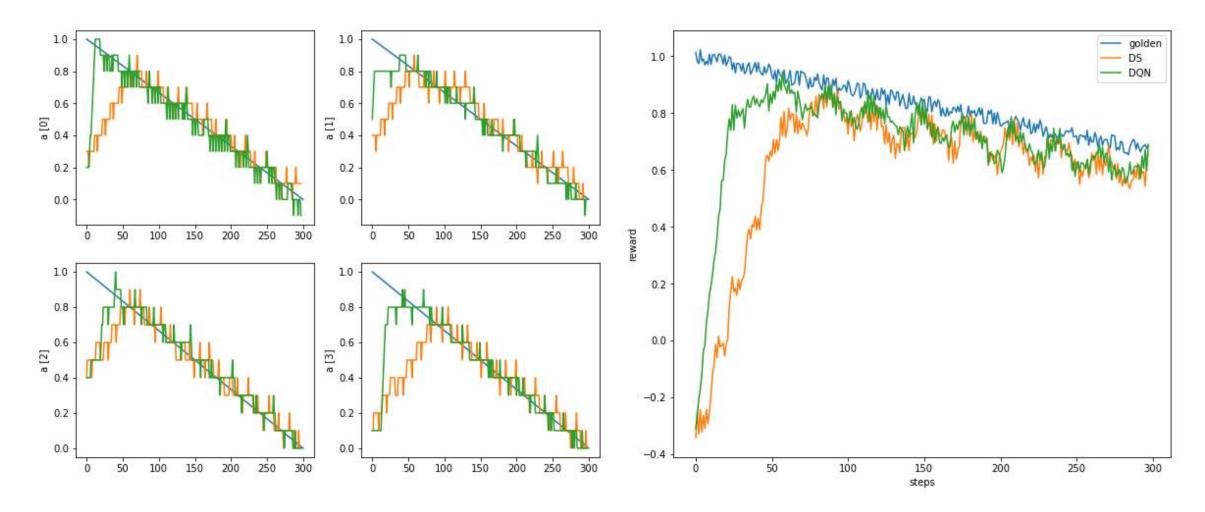
Algorithm 2: Dithering Search Initialize replay memory D to capacity NInitialize step length array M with the same dimensions as knobs Observe initial state S_0 initial reward R_0 and action $A = A_0$ For t = 1, T do Initialize activate dimension pointer d = 0Set A[d] = A[d] + M[d] #run a step on dimension d Execute action A and observe reward R_t and new state s_{t+1} Sort transition (s_t, A, s_{t+1}, R_t) in D If $R_t < R_0$ do #If target falls, turn around and continue M[d] = -M[d]Else do #If target improve, jump to another dimension d=d+1 End If **End For**

Dithering search method



Simulation:

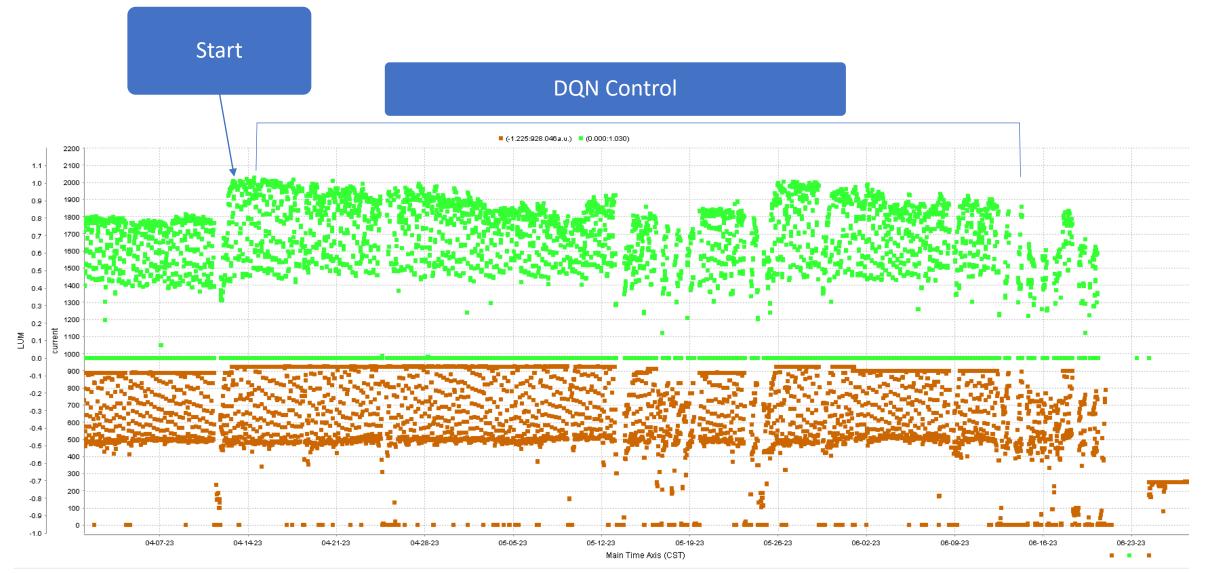
 $\begin{array}{c} L=I[0]/900-abs\,(knob[0]-(I[0]-500)/300)-abs\,(knob[1]-(I[1]-750)/300) \\ -abs\,(knob[2]-(I[0]-700)/300)-abs\,(knob[3]-(I[1]-650)/300) \end{array} \right) \\ \end{array}$



9

10

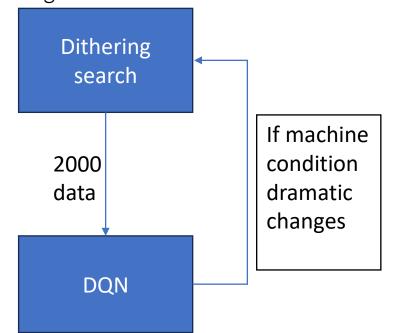
The method has been used about 1 months:



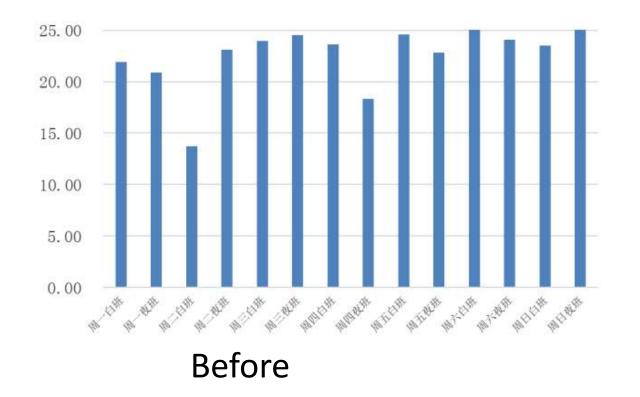
II offset optimize			– 🗆 X
start stop	data_num	5000	set_parameter
parameter reseted parameter reseted	start_cur start_cur_2	880	alignment
	stop_cur	600	plot
	epision	0.2	single_search
	sleep_time	9.5	discrete_search
	L_take_num	2	userete_searen
	0.8		
	0.6		
	0.4		
	0.2		
clear		0.2 0.4 0.6	0.8

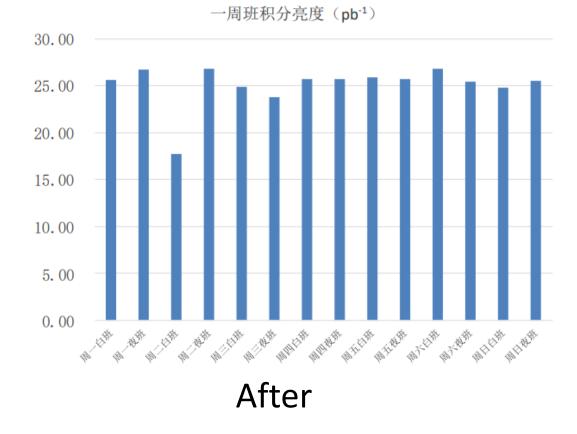
Hyper-parameters:

- Training data num: 5000
- Start current: 880
- Stop current: 600
- Exploration rate: 0.2
- Gamma: 0.5
- Waiting time: 7.5
- Lum get times: 3

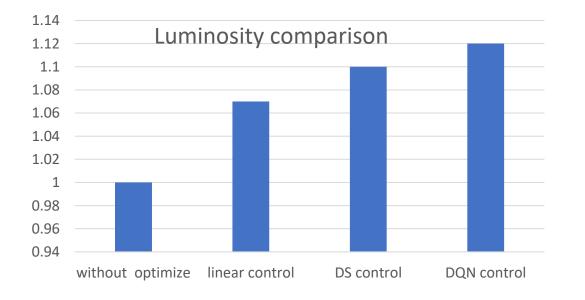


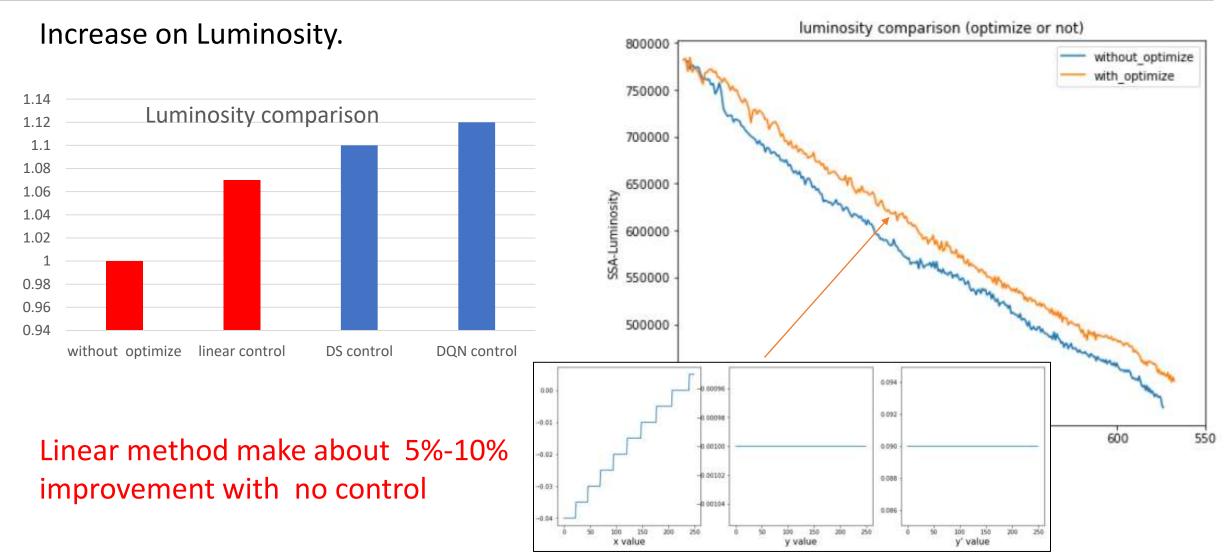
Make different operator to reach the same operation level





Increase on Luminosity.





Increase on Luminosity. luminosity comparison (Dithering-search vs. line) 850000 1.14 800000 Luminosity comparison 1.12 Work well 1.1 750000 1.08 700000 1.06 uminosity 1.04 650000 1.02 SSA-LI 1 600000 0.98 Failed 0.96 550000 0.94 500000 without optimize linear control DS control DQN control 450000 0.01 -0.0008 0.17

0.00

-0.01

-0.02

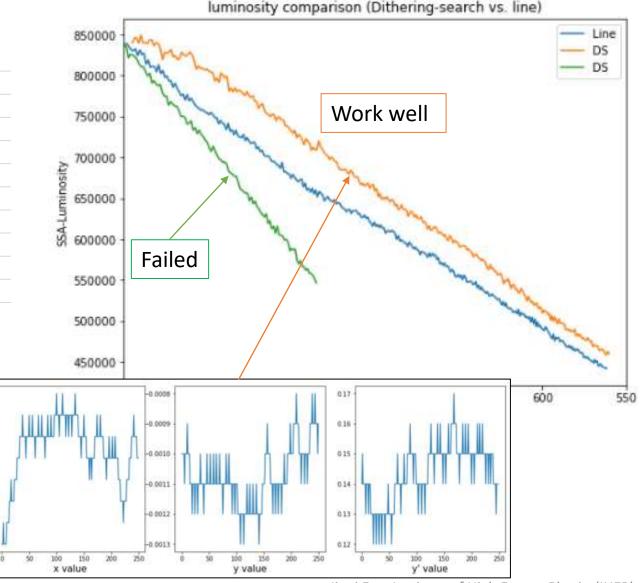
-0.03

-0.04

-0.05

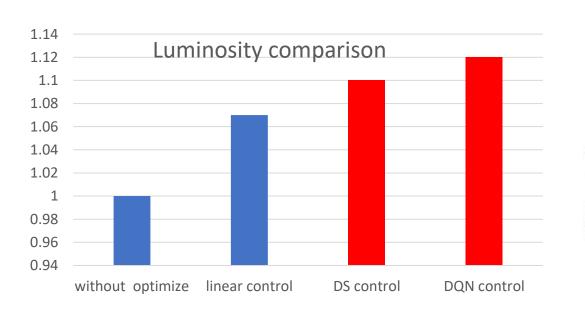
-0.06

DS method make about 2%-4% improvement with linear control

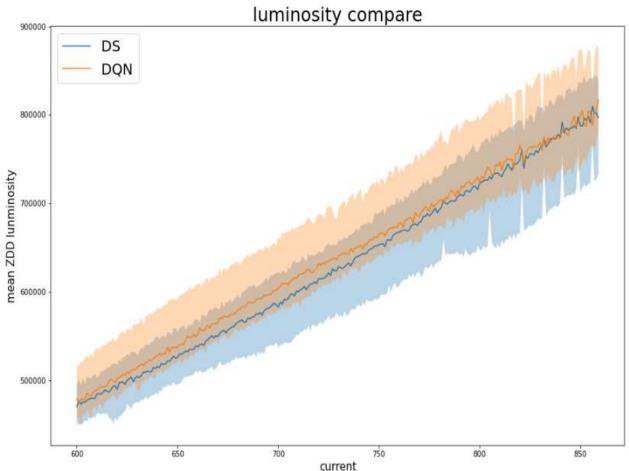


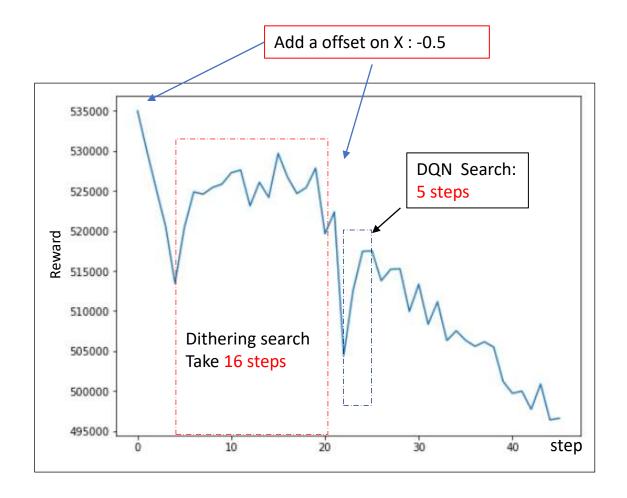
Jiaqi Fan, Institute of High Energy Physics(IHEP) 15

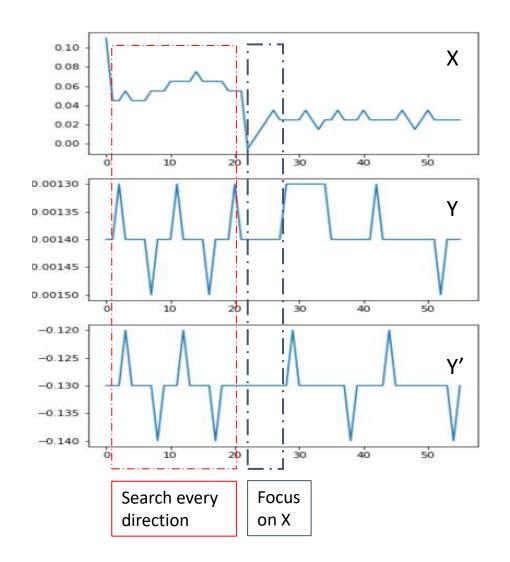
Increase on Luminosity.



DQN method make about 1.5% improvement with DS control







Summary

- Machine learning provide a new approach to solve control problems.
- A reinforcement learning method has been made to control the offset for BEPCII and bringing considerable benefits.
- Operators' experience helps a lot on this task, maybe they don't know machine learning, they know operation more than anyone else.
- Most our operators believe in machine learning even they don't know how it works.
- What is the next?
- Machine learning method used online is always restricted by data. We use a small
 observation input to reduce the amount of data required, so the environment we made is
 change slowly. Take more parameters into account or make parameters out of the
 environment stable is what we are going to do next.

Thank you!