Current Status of UVSOR Synchrotron Radiation Facility

Kenji Hayashi, Yoshitaka Taira, Elham Salehi, Hiroshi Ota, Kohei Shimizu, Jun-ichiro Yamazaki, Aki Minakuchi

UVSOR Facility, Institute for Molecular Science

Masahiro Katoh

UVSOR Facility, Institute for Molecular Science; HiSOR, Hiroshima Univ.

Abstract

We present the current status of UVSOR-III electron storage ring. It is a 750 MeV machine dedicated to synchrotron radiation in UV, VIS, IR and SX region, including LCS gamma-rays. We are accepting about 4,000 person-day researchers yearly from nationwide and outside Japan. The accelerator complex consists of a 15 MeV linear accelerator, a 750 MeV booster synchrotron and a storage ring of 53 m circumference, in which 6 undulators are operational. The operation time is from 9 am to 9 pm from Tuesday to Friday, including overnight bonus operation on Thursday night. All 60 hours operation is in top-up mode. Eight technical staffs with several beamline scientists are managing total 14 beamlines, while four technical staffs operate all accelerators. Most of the beamline control softwares and some of the accelerator control softwares are made in-house. UVSOR-III is reaching 40 years old and facing severe aging problems, especially of cooling water leakage from electromagnets and vacuum leakage from beam ducts. We are managing the troubles with various solutions, including partial replacement of coils, applying sealants, and so on.

UVSOR-III Accelerator Complex

Activity as Inter-University Research

Facility 36 Weeks User Operation/year, Total 4000+ (person*day) Users

History

1975: Institute Established 1983: First Light 1984: User Operation Start 1986: FEL Study Start 1997: FEL Lasing at 239nm (World Record) 2003: Upgrade to UVSOR-II (Combined Function Quadrupole etc.) 2004: THz CSR Study Start 2007: Full Energy Injection Start 2010: Top-Up Operation Start 2012: Upgrade to UVSOR-III

Steps Toward UVSOR-III				
	UVSOR	UVSOR-II	UVSOR-III	
	(1983~2003)	(2003~2012)	(2012~)	
Operation Energy	750 MeV	750 MeV	750 MeV	
Injection	600 MeV	600 MeV	750 MeV	
Energy			(Top-Up)	
Average BeamCurrent	~150 mA	~200 mA	300 mA	
# of IDs	3	4	6	
Emittance	~160 nm rad	27 nm rad	17 nm rad	
Lattice	DBA	Extended DBA	Extended DBA	
		Combined Function Quad./Sext.	+ Combined Function Bend	

parameter	Storage Ring
Operation Energy	750 MeV
Injection Energy	750 MeV
Beam Current	300 mA
Natural Emmittance	17 nm-rad
Circumference	53.2 m
Bending Radius	2.2m
Lattice	Extended DBA x 4
Straight Section for I.D.	4 m × 4, 1.5 m × 2
Betatron Tunes	(3.60, 3.20)
Momentum Compaction	0.030
Energy Spread	5.4×10^{-4}
RF Frequency	90.1 MHz
RF Voltage	120 kV
Natural Bunch Length	128 ps
3 rd Harmonic Cavity	One Installed

parameter	Booster	
	Synchrotron	
Operation Energy	750 MeV	
Injection Energy	15 MeV	
Average Beam Current	~15 mA	
Circumference	26.6 m	
Bending Radius	1.8 m	
Lattice	FODO x 6	
Momentum Compaction	0.138	
Betatron Tunes	(2.25, 1.25)	

parameter	Linac	
Injection Energy	15 MeV	
Peak Beam Current	~100 mA	
Length	2.5 m	

53.2 m		
2.2m		
nded DBA x 4	l	
4, 1.5 m ×	2	
8.60 <i>,</i> 3.20)		
0.030		
$5.4 imes 10^{-4}$		1
90.1 MHz		
120 kV		
128 ps		
ne Installed		
Inco	rtian Da	vicos
Inse	ertion Dev	<mark>vices</mark>
Inse U1 Apple-II Undulato	ertion Dev	<mark>vices</mark> U5 Apple-II
Inse U1 Apple-II Undulate Optical Klystron	ertion Dev	<mark>ViCES</mark> U5 Apple-II Variable Polarizat
Linse U1 Apple-II Undulate Optical Klystron Number of Periods	ertion Dev or / 10 + 10	Vices U5 Apple-II Variable Polarizat Number of Periods
U1 Apple-II Undulate Optical Klystron Number of Periods Period length	ertion Dev or /	Vices U5 Apple-II Variable Polarizat Number of Periods Period length
Linse U1 Apple-II Undulate Optical Klystron Number of Periods Period length Pole Length Pole Length	ertion Dev or / 10 + 10 88 mm 0.968 m + 0.968 m 24 200 mm	Vices U5 Apple-II Variable Polarizat Number of Periods Period length Pole Length
U1 Apple-II Undulate Optical Klystron Number of Periods Period length Pole Length Pole Gap Deflection Parameter	Prtion Dev or / 10 + 10 88 mm 0.968 m + 0.968 m 24-200 mm 7 36 (Max, Horizontal)	Vices U5 Apple-II Variable Polarizat Number of Periods Period length Pole Length Pole Gap Deflection Paramet
Linse U1 Apple-II Undulato Optical Klystron Number of Periods Period length Pole Length Pole Gap Deflection Parameter	Prtion Dev or / 10 + 10 88 mm 0.968 m + 0.968 m 24-200 mm 7.36 (Max. Horizontal) 4.93 (Max. Vertical)	Vices U5 Apple-II Variable Polarizat Number of Periods Period length Pole Length Pole Gap Deflection Paramet
U1 Apple-II Undulate Optical Klystron Number of Periods Period length Pole Length Pole Gap Deflection Parameter	Interpretation Interpretation Interpretation 10 + 10 88 mm 0.968 m + 0.968 m 24-200 mm 7.36 (Max. Horizontal) 4.93 (Max. Vertical) 4.06 (Max. Helical)	Vices U5 Apple-II Variable Polariza Number of Periods Period length Pole Length Pole Gap Deflection Paramet
U1 Apple-II Undulate Optical Klystron Number of Periods Period length Pole Length Pole Gap Deflection Parameter	ertion Dev or / 10 + 10 88 mm 0.968 m + 0.968 m 24-200 mm 7.36 (Max. Horizontal) 4.93 (Max. Vertical) 4.06 (Max. Helical)	Vices U5 Apple-II Variable Polarizat Number of Periods Period length Pole Length Pole Gap Deflection Paramet
U1 Apple-II Undulato Optical Klystron Number of Periods Period length Pole Length Pole Gap Deflection Parameter U3 In-vacuum Undula Number of Periods	Section Development 10 + 10 88 mm 0.968 m + 0.968 m 24-200 mm 7.36 (Max. Horizontal) 4.93 (Max. Vertical) 4.06 (Max. Helical)	Vices U5 Apple-II Variable Polarizat Number of Periods Period length Pole Length Pole Gap Deflection Paramet
U1 Apple-II Undulate Optical Klystron Number of Periods Period length Pole Length Pole Gap Deflection Parameter U3 In-vacuum Undulate Number of Periods Period length	Section Development or / 10 + 10 88 mm 0.968 m + 0.968 m 24-200 mm 7.36 (Max. Horizontal) 4.93 (Max. Vertical) 4.06 (Max. Helical)	Vices US Apple-II Variable Polarizat Number of Periods Period length Pole Length Pole Gap Deflection Paramet U6 In-vacuum Un Number of Periods Period length
U1 Apple-II Undulato Optical Klystron Number of Periods Period length Pole Length Pole Gap Deflection Parameter U3 In-vacuum Undula Number of Periods Period length Pole Length Pole Length	Sertion Development 10 + 10 88 mm 0.968 m + 0.968 m 24-200 mm 7.36 (Max. Horizontal) 4.93 (Max. Vertical) 4.06 (Max. Helical)	Vices U5 Apple-II Variable Polarizat Number of Periods Period length Pole Length Pole Gap Deflection Paramet U6 In-vacuum Unit Number of Periods Period length Pole Length
U1 Apple-II Undulato Optical Klystron Number of Periods Period length Pole Length Pole Gap Deflection Parameter U3 In-vacuum Undulato Number of Periods Period length Pole Length Pole Length Pole Cap Deflection Parameter	Sertion Development or / 10 + 10 88 mm 0.968 m + 0.968 m 24-200 mm 7.36 (Max. Horizontal) 4.93 (Max. Vertical) 4.93 (Max. Vertical) 4.06 (Max. Helical)	Vices US Apple-II Variable Polarizat Number of Periods Period length Pole Length Pole Gap Deflection Paramet U6 In-vacuum Un Number of Periods Period length Pole Length Pole Length Pole Length Pole Length Pole Length Pole Gap

U7 Apple-II
Variable Polari
Number of Perio
Period length

(
2013: STXM beamline BL4U
2020: LCS gamma ray offer @BL1U
2020: Momentum Microscope @BL6U

Control Systems

Most of the devices are controlled by PCs. As a ~40 years old facility, some of the devices remains in button / potentiometer operations.

De Fact standard programming language in UVSOR is LabVIEW[™].

> **Examples of in**house programs

Step by Step:

Manual control system for injection kicker of booster synchrotron.

Integrated to injection control system GUI in 2023.

A part of in-house programs use EPICS (above) and SQL (right).

Troubles in Recent Years

2022/10 & 11: Vacuum Leakage from Bellows duct **@Booster Synchrotron Temporal treatment with Liquid** Seal ™

Beam Injection Efficiency Drop: 200 mA Operation

Efficiency and ΔI (2022/8/1~2023/8/26)

Water Leakage from Beam Slit in 2021 @ BL7U Frontend Needed **5 weeks** for recovery.

Even a small pinhole makes a pool...

Total Replacement of Sextupole Main Coils in 2020 & 2021. **@** Combined function magnets in storage ring

One quadrant is shown.

Cooling Water Leakage from Booster Synchrotron Quad.

New cooling pipe added.

Duct replaced in spring 2015. RF noise reduced by >20dB.

Position Name

Fig.3. Cross-sectional view of the multi-pole magnet