
With development of the ABLT routine underway, authored by Carrie Elliott, we needed an interface
to establish the parameters of the scan. Initially, however, the various configurations in which operators
may want to perform the scan were not yet clearly defined. As a result, there was a need for a GUI that
could adapt flexibly and be readily modified as our understanding of the necessary conditions evolved.

To address these considerations, the choice fell upon PyQt5 as the preferred framework. Its modular
nature and ease of editing perfectly aligned with our evolving needs, allowing us to not only incorporate
the required elements as they became apparent but also refine the presentation to best suit our workflow
and preferences.

Operator-made Tools and Interfaces at SNS
J. Rye, C. Elliott, J. Mammosser, A. Zhukov - Spallation Neutron Source Oak Ridge, TN U.S.A.

At the Spallation Neutron Source, operators have developed software for assessing tuner motor functionality on the superconducting linac (SCL). Additionally,
a graphical user interface (GUI)-based application has been created to automate the optimization of beam losses and reduction of residual activation levels
within the accelerator tunnels. Python and Qt made this possible. Modern high-level programming languages like Python and GUI frameworks such as Qt and
Qt Designer enable individuals to quickly advance from beginners to creating sophisticated interactive applications. These tools have significantly enhanced
our capacity to develop user-friendly solutions to accelerate the completion of otherwise lengthy and complex processes.

Abstract

*This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access- plan).

SCL tuners need to be tested before and after every run cycle. This process used to take on average 2 hours with the
81 cavities originally installed and could have taken 3 hours or more by the end of the Proton Power Upgrade
(32 additional cavities). With the implementation of this software, we have gotten that down to just a few minutes
regardless of the number of tuners to be tested.

Abstract

Parameters measured:
• Cavity field
• Klystron frequency
• Motor position
• Motor movement command
• Motor hard stop limit switches

Testing SCL Tuner Motor Functionality

Automated Beam Loss Tuning (ABLT) Interface

General algorithm:
• Ramp cavities to a low gradient
• Move klystrons in 0.5 kHz increments to roughly find resonance
• Move klystrons in 0.1 kHz increments to find max fields
• Move tuners off resonance, verify field drop
• Move tuners back on resonance, verify field return

Considerations:
• Temperature of the cavity
• On resonance vs detuned at the start
• Where the tuners should end up, detuned vs on resonance
• As always, how to store the data for easy reference later

Checks performed:
• Field drop on detune
• Field return on retune
• Motor position within an acceptable

range of the goal after every move
• No hard limit reached
• Move and stop commands given /

rescinded appropriately

The Automated Beam Loss Tuning project is a collaboration between Operations and Accelerator
Physics groups with the ultimate goal of utilizing machine learning (ML) in tuning beam losses and
lowering residual activation levels in the accelerator tunnels.

Operators perform the majority of the work, writing all code related to the scan, the GUI, and post-
run correlation data analysis / visualization. We also perform the scans and take all the data. A member of
the Accelerator Physics group, Alexander Zhukov, is our point of contact / mentor for all Python-related
questions and has been invaluable in this process. Physics group will also be handling the ML side of
things once we have optimized our software and taken enough data.

Future plans:
• Re-write in PySide6 utilizing an OOP approach
• Launching in separate threads
• Graphical User Interface

Parameters:
• Window size / area to be

scanned
• Maximum safe step size
• Standard deviation
• Soft BLM limit, hard limit

determined dynamically
• Loss tuning vs Data only

Clicking ‘Initialize’ loads the
scan parameters as well as
auto switches to the Run tab.

Selectable devices:
• 60 pulse BLM signals
• Single pulse BLM signals
• Quadrupole magnets
• MEBT – SCL phases

Filtering:
• Selecting a group from the tree

will auto filter by that group
• Text input field:

o Applied on top of tree filter, if selected
o Single space = logical ‘and’
o Pipe character = logical ‘or’
o Custom filtering supported via override of the

‘filterAcceptsRow’ method of the
‘QSortFilterProxyModel’ class

Convenience features:
• Save / Load configurations, date and time

added to filename automatically
• Curated groups of devices selectable from

the tree, does not auto check however, must
hit ‘Select current filter’ button

• Device tabs auto switch when selecting
device groups from the tree

• Next scan can be configured without
impacting current scan

*** For detailed information on the scan
routine, please consider attending Carrie
Elliott’s presentation “Development of an
Automated Beam Loss Tuning Application
in a High-Power Accelerator” on
Thursday, Sept. 14th.

Setup

Safety features:
• Minimum / maximum window and step sizes

hard coded, GUI will not accept values
outside of these ranges

• Setup combo boxes will only change their
respective values if the appropriate tab is
selected and device rows are highlighted

• Locked to a single instance on a specific
operator interface (OPI) to prevent multiple
scans running simultaneously

• Live plot of the calculated
activation sum shows entire
history of scan vs just a
window of time

• Informational statements,
warnings, and other
information printed to the
text browser

• Multiple iterations of the
same scan can be performed
if desired. Once the previous
thread closes, another
instance will be created with
the same scan configuration.

• Click ‘Run’ once ready. Stop
button not shown here but
featured in a later version.Future plans:

• Pause button
• Rewrite in PySide6, we have collectively decided to start developing in PySide vs PyQt
• Move application to a softIOC, this should make it more reliable overall as well as prevent the need to

lock it to a single instance via software
• Real time data visualization, currently all done post scan
• General aesthetic improvements, suggestions welcome!
• Gain permission to tune losses during production
• Ultimately, incorporate machine learning

Lessons learned:
• People WILL hit the ’run’ button

more than once, especially if a scan is
in progress. Disable it until the scan is
complete.

• Just because you CAN build it, does
not necessarily mean you SHOULD
build it, sometimes less is more

• Python wrappers for Qt are awesome

Thanks for reading!

Run

