Effects of renormalization group kernels on the lightest neutrino mass in the Type-I Seesaw Model

Nicholas J. Benoit (広島大学 Visitor, Graduated Sept 2022)

Collaboration with:

T. Morozumi (広大 , CORE-U); Y. Shimizu (広大 , CORE-U)

K. Takagi; A. Yuu

Based on: PTEP (2022), 11, 113B02 DOI: <u>https://doi.org/10.1093/ptep/ptac138</u> arXiv: <u>2210.00165 [hep-ph]</u>

Summary of our work

We study **Type-I Seesaw models** in view of the **lightest neutrino being massless**

3-2 model Point 1: Energy Λ Both the 3-3 and the 3-2 Type-I Seesaw $\overset{(2)}{\kappa}, \overset{(2)}{M_B}, \overset{(2)}{y_{\nu}}$ M_R, y_{ν} ${}^{(1)}_{\mathcal{K}}$ models can predict a massless neutrino 3-3 model Point 2: Energy The massless neutrino can become $\stackrel{(1)}{\kappa}$ massive under Renormalization Group effects in the 3-2 model

Our result: With the simplest renormalization group equations and scale matching, the lightest neutrino always remains massless in the 3-3 model.

Facts about neutrinos

- Standard Model fermions
- Only weakly interacts (electric and color charge neutral)
- SM only includes left-handed neutrinos
- In the SM, the flavor for neutrinos are defined from the electroweak doublet

$$e \leftrightarrow \nu_e \qquad \qquad \mu \leftrightarrow \nu_\mu \qquad \qquad \tau \leftrightarrow \nu_\tau$$

• A typical example including neutrinos is beta-decay

$$n \to p + e^- + \overline{\nu_e}$$

Measurement of the endpoint energy for the emitted electron is continous

Beyond the Standard Model

• Neutrinos are measured to oscillate between flavors

 $\pi^+ \to \mu^+ + \nu_\mu$

Alpha can be a electron, muon, or tauon flavor. Measureable over macroscopic distances (kilometers)

- Flavor oscillations as described by quantum mechanics
 - Derived from experimental measurements

$$\Delta m_{21}^2 = 7.42 \times 10^{-5} \text{eV}^2$$
$$\Delta m_{31}^2 = 2.510 \times 10^{-3} \text{eV}^2$$

[Normal Hierarchy; NuFITv5.1, 2021]

Problem: How do we fit neutrino masses into the Standard Model?

Issue is the neutrino mass type is ambiguous

- Recall neutrinos are neutral \rightarrow allows for Majorana or Dirac mass
- So, we have a choice for the neutrino mass term

Dirac mass	Majorana mass
Comes from the Higgs mechanism	From an unknown mechanism
Similar to other Standard Model particles	New particles depend on the mechanism
$\overline{ u}_R m_D u_L$	$rac{1}{2}m_M\overline{ u}_L^c u_L$
Introduces new right-handed neutrinos	Superscript <i>c</i> is for charge conjugation

Issue is the neutrino mass type is ambiguous

- Another point, the neutrino masses are tiny
 - Upper limit on lightest mass by KATRIN (possible it is massless)
 - Mass-squared differences are small

It can be interesting to explain why neutrinos have a tiny mass

New physics with Majorana neutrinos

• Type-I Seesaw extends the Standard Model particle content,

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \overline{N_n} i \partial N_n - \frac{1}{2} \overline{N_n^C} M_{Rn} N_n - \left(\frac{y_{\nu n}}{l_L} \widetilde{H} N_n + \text{h.c.} \right)$$

[Minkowski, P. 1977], [Yanagida, T. 1979], [Gell-Mann, M. Etc 1979], [Glashow, S. L. 1980], [Mohapatra, R. N. 1980], [Fukugita, M. & Yanagida, T. 1986]

- Addition of new right-handed fermions, which transform as SM gauge singlets
- Neutrinos masses, after electroweak breaking, are from an effective matrix

$$m_{eff} = -\frac{v^2}{2} y_{\nu} \frac{1}{M_R} \frac{y_{\nu}^T}{y_{\nu}}$$

The Yukawa matrix from the Dirac mass term

Majorana mass matrix from the new right-handed fermions

• Neutrinos have a tiny mass if the right-handed fermions are heavy

Heavy right-handed fermions

To generate tiny neutrino masses the new fermions have mass near GUT scales, •

- Thus a new mass scale is introduced into the theory •
- Pratically, we need to consider the renormalization of UV divergances appearing • in different diagrams

 $m_{eff} = -\frac{v^2}{2} y_{\nu} \frac{1}{M_R} y_{\nu}^T \quad \begin{array}{l} \text{The resulting renormalized} \\ \text{quanties then depend on the} \\ \text{energy scale being considered} \end{array} \quad m_{eff}(\mu) = -\frac{v^2}{2} y_{\nu}(\mu) \frac{1}{M_R(\mu)} y_{\nu}^T(\mu)$

Problem: Neutrino masses are energy scale dependent and should be treated carefully

Why the renormalization group is needed

- The solution is to use renormalization group equations
- At one-loop the Yukawa matrix and right-handed mass matrix scale as,

$$-16\pi^{2}\frac{dy_{\nu}(t)}{dt} = \left(\frac{3}{2}(y_{\nu}(t)y_{\nu}^{\dagger}(t)) + \operatorname{Tr}\left[y_{\nu}(t)y_{\nu}^{\dagger}(t)\right] - \frac{9}{20}g_{1}^{2} - \frac{9}{4}g_{2}^{2}\right)y_{\nu}(t) \quad \text{[Antusch, S. Etc 2001],} \\ -16\pi^{2}\frac{dM_{R}(t)}{dt} = \left(y_{\nu}^{\dagger}(t)y_{\nu}(t)\right)^{T}M_{R}(t) + M_{R}(t)\left(y_{\nu}^{\dagger}(t)y_{\nu}(t)\right)$$

• Given an initial condition we can solve for the neutrino masses at specific energies

$$m_{eff}(\mu) = -\frac{v^2}{2} y_{\nu}(\mu) \frac{1}{M_R(\mu)} y_{\nu}^T(\mu)$$

Why the renormalization group is needed

• A final point, recall the new right-handed fermions are heavy,

Higher Energy Lower

$$\Lambda_{GUT}$$
 M_n M_{n-1} \cdots M_1 SM

If we want to calculate the neutrino masses at energies here, we should consider all the righthanded fermions to be decoupled

• Decoupling results in an effective theory with a new Dim-5 operator in the Lagrangian, $\mathcal{O}_5 = \frac{1}{4} \kappa_{gh}^*(\mu) \left(\overline{l_L^C}^g \cdot H\right) \left(l_L^h \cdot H\right) + \text{h.c.}$ [Weinberg, S. 1979]

Energy scale dependance is now in the coefficient kappa

How many heavy, right-handed fermions?

- In the Type-I Seesaw we choose the number of heavy, right-handed fermions
- The minimal choice allowed by experiments is the 3-2 Type-I Seesaw model

The massless neutrino

• The 3-2 model has a popular understanding that the lightest neutrino is massless

• In the full theory region the neutrino mass are given as,

Only two Yukawa couplings because only two heavy, right-handed fermions

The massless neutrino

• The 3-2 model has a popular understanding that the lightest neutrino is massless

• In the effective theory a=1 region, the result depends on the RG equations

$$m_{eff}^{(1)}(t_1) = -\frac{v^2}{2} e^{-\frac{1}{8\pi^2} \int_0^{t_1} \alpha_{y_{\nu}}^{(2)}(s) ds} \left(\binom{(2)}{M_R(t_1)} \right)^{-1} \binom{(2)}{U(t_1)} y_{\nu 1}(0) y_{\nu 1}^T(0) \binom{(2)}{U(t_1)}^T }_{\mathbf{RG equations}} \right)$$
For one-loop RG equations
$$-\frac{v^2}{2} e^{-\frac{1}{16\pi^2} \int_0^{t_1} \alpha_{\kappa}^{(2)}(s) ds} \frac{1}{M_2(0)} \binom{(2)}{W(t_1)} y_{\nu 2}(0) y_{\nu 2}^T(0) \binom{(2)}{W(t_1)}^T, } M_{\text{lightest}} = 0$$

Y

The massless neutrino

• The 3-2 model has a popular understanding that the lightest neutrino is massless

However, this is not always true

1. Two-loop renormalization group running generates mass but very tiny...

 $m_{\rm lightest} \sim 10^{-13} {\rm eV}$ [S. Davidson, G. Isidori and A. Strumia (2007)], [Z.-z. Xing and D. Zhang (2020)]

2. One-loop level matching generates mass

 $m_{
m lightest} \sim [10^{-11}, 10^{-8}] {
m eV}$ [S. Zhou (2021)]

The neutrino does not always remain massless

Recall we can choose the number of right-handed fermions

• 3-2 and 3-3 Type-I Seesaw models are the simplest to explain neutrino masses

number of active neutrinos and the number of right-handed fermions

The 3-3 model

• The usual 3-3 model predicts all active neutrinos are massive

$$\begin{array}{c} \Lambda \underbrace{\downarrow}_{M_{R}, y_{\nu}} \underbrace{\downarrow}_{M_{3}}^{(3)} \underbrace{\downarrow}_{\kappa, M_{R}, y_{\nu}}^{(2)} \underbrace{\downarrow}_{M_{2}}^{(2)} \underbrace{\downarrow}_{\kappa, M_{R}, y_{\nu}}^{(2)} \underbrace{\downarrow}_{M_{1}}^{(1)} \underbrace{\downarrow}_{\kappa} \\ m_{eff} = -\frac{v^{2}}{2} y_{\nu}(\mu) \frac{1}{M_{R}(\mu)} y_{\nu}^{T}(\mu), \\ = -\frac{v^{2}}{2} \left(y_{\nu 1}(\mu) - y_{\nu 2}(\mu) - y_{\nu 3}(\mu) \right) \begin{pmatrix} \frac{1}{M_{1}(\mu)} & 0 & 0 \\ 0 & \frac{1}{M_{2}(\mu)} & 0 \\ 0 & 0 & \frac{1}{M_{3}(\mu)} \end{pmatrix} \begin{pmatrix} y_{\nu 1}^{T}(\mu) \\ y_{\nu 2}^{T}(\mu) \\ y_{\nu 3}^{T}(\mu) \\ y_{\nu 3}^{T}(\mu) \end{pmatrix} \right\} \quad m_{\text{lightest}} \neq 0$$

Three Yukawa vectors produce three massive active neutrinos

The 3-3 model

• The usual 3-3 model predicts all active neutrinos are massive

$$\begin{split} & \Lambda \underbrace{\prod_{M_R, y_{\nu}} \prod_{M_3}^{(3)} \prod_{\kappa, M_R, y_{\nu}}^{(3)} \prod_{M_2}^{(2)} \prod_{\kappa, M_R, y_{\nu}}^{(2)} \prod_{M_1}^{(1)} \prod_{\kappa}^{(1)}} \\ & m_{eff}(\mu) = -\frac{v^2}{2} y_{\nu}(\mu) \frac{1}{M_R(\mu)} y_{\nu}^T(\mu), \\ & \to y_{\nu3}(\mu) \equiv a y_{\nu1}(\mu) + b y_{\nu2}(\mu) \end{split} \\ & \text{We assume the third Yukawa is a superposition of the first two} \\ & m_{eff}(\mu) = -\frac{v^2}{2} \left(y_{\nu1}(\mu) - y_{\nu2}(\mu) \right) \begin{pmatrix} \frac{1}{M_1(\mu)} + \frac{a^2}{M_3(\mu)} & \frac{ab}{M_3(\mu)} \\ \frac{ab}{M_3(\mu)} & \frac{1}{M_2(\mu)} + \frac{b^2}{M_3(\mu)} \end{pmatrix} \begin{pmatrix} y_{\nu1}^T(\mu) \\ y_{\nu2}^T(\mu) \end{pmatrix} \\ \end{pmatrix} \\ & m_{\text{lightest}} = 0 \end{split}$$

The effective mass matrix becomes similar to the 3-2 model

The 3-3 model

• The 3-3 models often predict all active neutrinos are massive

How does this condition behave at the low energy scales? Is it similar to the 3-2 model?

 $y_{\nu3} \equiv ay_{\nu1} + by_{\nu2}$

 $m_{\text{lightest}} = 0????$

Running down to the low energies

- We solve the same 2 steps as the 3-2 model, but for three effective theories
- 1. We solve one-loop renormalization group equations down to the next heaviest

 M_3 must be integrated out creating effective theory (3)

2. Then we use tree-level matching across the heavy mass

$$m_{eff}(0) = m_{eff}^{(3)}(0),$$

$$-\frac{v^2}{2}y_{\nu}(0)\frac{1}{M_R(0)}y_{\nu}^T(0) = -\frac{v^2}{4}\kappa^{(3)}(0) - \frac{v^2}{2}y_{\nu}^{(3)}(0)\left(\binom{(3)}{M_R(0)}\right)^{-1}\binom{(3)}{y_{\nu}(0)}^T$$

Running down to the low energies

• To study if the lightest active neutrino is still massless we substitute the running solutions,

$$m_{eff}^{(1)}(t_1) = -q \frac{W(t_1 - t_2) y_{\nu 2}^{(3)}(t_2) y_{\nu 2}^{(3)}(t_2)^T W(t_1 - t_2)^T}{-x W(t_1 - t_2) W(t_2) y_{\nu}^{(3)}(0)} \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix} y_{\nu}^{(3)}(0)^T W(t_2)^T W(t_1 - t_2)^T}{-z U(t_1 - t_2) y_{\nu}^{(2)}(t_2) y_{\nu}^{(2)}(t_2)^T U(t_1 - t_2)^T}.$$

Three different kernel matrices that transform, two kinds of Yukawa vectors

Running down to the low energies

• We can rewrite the effective mass interms of the transformed matrices,

$$y_{\nu 2}^{W}(t_{1}) = \overset{(2)}{W}(t_{1} - t_{2})\overset{(3)}{\mathbf{y}_{\nu 2}}(t_{2}),$$

$$y_{\nu j}^{WW}(t_{1}) = \overset{(2)}{W}(t_{1} - t_{2})\overset{(3)}{W}(t_{2})\overset{(3)}{y_{\nu j}}(0), \quad \text{where } j = 1, 2,$$

$$y_{\nu 1}^{U}(t_{1}) = \overset{(2)}{U}(t_{1} - t_{2})\overset{(2)}{y_{\nu}}(t_{2}).$$

• The result is three transformed vectors, so we can conclude

The lightest active neutrino mass depends on the details of how the kernel matrices transform the Yukawa vectors

Simplest Kernels

• In the one-loop renormalization group equations, the simplest kernels only depend on the Yukawa matrices of the neutrinos

From the Yukawa renormalization $\stackrel{(n)}{U}(t_f - t_i) \equiv T \exp\left[-\frac{1}{16\pi^2} \int_{t_i}^{t_f} \frac{3}{2} \stackrel{(n)}{y_{\nu}} \stackrel{(s)}{(s)} \stackrel{(n)}{y_{\nu}} ds\right]$

Difference between the kernels

From the kappa renormalization $\stackrel{(n)}{W}(t_f - t_i) \equiv T \exp\left[-\frac{1}{16\pi^2} \int_{t_i}^{t_f} \frac{(n)}{y_{\nu}(s)} \frac{(n)}{y_{\nu}(s)} ds\right]$

• The similarity of the kernels allows us to write the following relation,

$$\begin{split} W^{(n)}(t_f - t_i) \overset{(n)}{y_{\nu}}(t_i) &= \overset{(n)}{y_{\nu}}(t_f) \overset{(n)}{W_R}(t_f - t_i) e^{\frac{1}{16\pi^2} \int_{t_i}^{t_f} \overset{(n)}{\alpha_{y_{\nu}}}(s) ds} \\ & \text{where,} \quad \overset{(n)}{W_R}(t_f - t_i) = T \exp\left[\frac{1}{32\pi^2} \int_{t_i}^{t_f} (\overset{(n)}{y_{\nu}}(s)^{\dagger} \overset{(s)}{y_{\nu}}(s)) ds\right] \end{split}$$

Simplest Kernels

• Using the relation for the kappa kernel modifies the effective mass matrix,

$$\overset{(n)}{W}(t_f - t_i)\overset{(n)}{y_{\nu}}(t_i) = \overset{(n)}{y_{\nu}}(t_f)\overset{(n)}{W}_R(t_f - t_i)e^{\frac{1}{16\pi^2}\int_{t_i}^{t_f} \overset{(n)}{\alpha_{y_{\nu}}}(s)ds}$$

• The result is two Yukawa vectors and no more transformations

$$\begin{split} m_{eff}^{(1)}(t_1) &= -q \, \mathbf{y}_{\nu 2}^W(t_1) \mathbf{y}_{\nu 2}^W(t_1)^T \\ &- x' \begin{pmatrix} (2) \\ y_{\nu}(t_1) & \mathbf{y}_{\nu 2}(t_1) \end{pmatrix} \begin{pmatrix} (2) \\ W'_R(t_1 - t_2) & 0 \\ 0 & 1 \end{pmatrix} A(t_2) \begin{pmatrix} (2) \\ W'_R(t_1 - t_2) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} (2) \\ y_{\nu}(t_1)^T \\ W_{\nu 2}(t_1)^T \end{pmatrix} \\ &- \frac{v^2}{2M_R(t_1)} \begin{pmatrix} (2) \\ y_{\nu}(t_1) \end{pmatrix} \begin{pmatrix} (2) \\ y_{\nu}(t_1) \end{pmatrix} (t_1)^T$$

Simplest Kernels

- This means, at low energies the lightest active neutrino remains massless
 - Proof only valid for the simplest kernels

$$m_{eff}^{(1)}(t_1) = \begin{pmatrix} (2) & W \\ y_{\nu}(t_1) & \mathbf{y}_{\nu 2}(t_1) \end{pmatrix} \begin{pmatrix} \alpha(t_1, t_2) & \beta(t_1, t_2) \\ \beta(t_1, t_2) & \gamma(t_1, t_2) \end{pmatrix} \begin{pmatrix} (2) \\ y_{\nu}(t_1)^T \\ W \\ \mathbf{y}_{\nu 2}(t_1)^T \end{pmatrix}$$

Only generates 2 active neutrino masses, because no third Yukawa to generate mass

 $m_{\text{lightest}} = 0$

Conclusion

We studied Type-I Seesaw models in view of the lightest neutrino being massless

Backups

Beyond the Standard Model

Neutrinos are measured to oscillate between flavors

Alpha can be a electron, muon, or tauon flavor. Measureable over macroscopic distances (kilometers)

• Flavor oscillations as described by quantum mechanics

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L,E) \approx \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{kj}^{2}L}{2E}\right)$$

Probability of appearance for flavor beta from alpha The phase of the flavor oscillations depend on neutrinos having a mass

Mass type, the Dirac Equation and Majorana fermions

• Solutions to the fermion wavefuntion from the Dirac equation depend on the representation of the gamma matrices,

 $(i\gamma^{\mu}\partial_{\mu} - m)\Psi = 0 \qquad \{\gamma^{\mu}, \gamma^{\nu}\} = 2\gamma^{\mu\nu} \qquad \gamma_{0}\gamma_{\mu}\gamma_{0} = \gamma^{\dagger}_{\mu}$

• Real solutions to the fermion wavefuntion can be found using the Majorana represenation of the gamma matrices,

$$\gamma^{0} = \begin{pmatrix} 0 & \sigma^{2} \\ \sigma^{2} & 0 \end{pmatrix}, \gamma^{1} = \begin{pmatrix} i\sigma^{1} & 0 \\ 0 & i\sigma^{1} \end{pmatrix}, \gamma^{2} = \begin{pmatrix} 0 & \sigma^{2} \\ -\sigma^{2} & 0 \end{pmatrix}, \gamma^{3} = \begin{pmatrix} i\sigma^{3} & 0 \\ 0 & i\sigma^{3} \end{pmatrix}$$

- Then $\Psi = \Psi^*$, which is called the Majorana condition
- For a general repesenation the Majorana condition becomes,

$$\Psi = \Psi^c = \gamma^0 C \Psi^*$$

Fields satisfying the Majorana condition are Majorana fields and can have Majorana mass

Mixing matrix and the effective neutrino mass

• Type-I Seesaw after electroweak symmetry breaking

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\overline{N_n}i\partial N_n - \frac{1}{2}\left(\overline{N_n^C}M_{R\,n}N_n + \overline{\nu_L}m_DN_n + \overline{N_n^C}m_D^T(\nu^C)_R + \text{h.c.}\right)$$

• To diagonalize the the masses we can introduce a unitary transformation,

$$\begin{pmatrix} \nu \\ N^C \end{pmatrix}_L = \mathbb{U} \begin{pmatrix} \nu_m \\ N_m^C \end{pmatrix}_L, \qquad \mathbb{U}^{\dagger} \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \mathbb{U}^* = \begin{pmatrix} m_{eff} & 0 \\ 0 & M_N \end{pmatrix}$$

• Then we can find the effective neutrino mass matrix is,

$$m_{eff} \approx -m_D \frac{1}{M_R} m_D^T = -\frac{v^2}{2} y_\nu \frac{1}{M_R} y_\nu^T \qquad m_D \ll M_R$$

Direct searchs for light right-handed fermions

- Aside: This is not always true, you can construct a theory with light right-handed fermions assuming tiny lepton number violation
 - These light (low-scale) right-handed fermions and the lepton number violation processes are looked for at colider experiments
- Light right-handed fermions are possible under the following condition, $\mathbb{U} \equiv \begin{pmatrix} U & V \\ A & B \end{pmatrix}, \qquad U^* m_{eff} U^{\dagger} + V^* M_N V^{\dagger} = 0, \qquad V = U m_{eff}^{1/2} \Omega M_N^{1/2}$
- Omega an arbitrary matrix, so the right-handed fermions can be light and allow for tiny neutrino effective masses
 - The matrix V is also tiny, and it mediates lepton number violation (mixing between neutrinos and the right-handed fermions)
- This type of situation has not been found at colliders [ATLAS, 2019; CERN-EP-2019-071]

New physics with Majorana neutrinos

• Type-I Seesaw extends the Standard Model particle content,

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\overline{N_n}i\partial N_n - \frac{1}{2}\overline{N_n^C}M_{R\,n}N_n - \left(y_{\nu n}\overline{l_L}\widetilde{H}N_n + \text{h.c.}\right)$$

[Minkowski, P. 1977], [Yanagida, T. 1979], [Gell-Mann, M. Etc 1979], [Glashow, S. L. 1980], [Mohapatra, R. N. 1980], [Fukugita, M. & Yanagida, T. 1986]

Addition of new right-handed fermions, which transform as SM gauge singlets

These are Majorana fermions that are from a new mass scale

They also form a Dirac mass term with the SM neutinos via the Higgs

Why the renormalization group is needed

• This means to do a proper calculation we need to consider the series of effective theories, linked together by renormalization group equations

1-Loop Renormalization in the Type-I Seesaw

• As an example if we consider the bare fields to be,

$$\mathcal{L}^{0} = \partial_{\mu} H^{0\dagger} \partial^{\mu} H^{0} + \overline{l_{L}^{0}} i \partial l_{L}^{0} + \frac{1}{2} \overline{N_{n}^{0}} i \partial N_{n}^{0} - \frac{1}{2} \overline{N_{n}^{0}} M_{R n}^{0} N_{n}^{0} - \left(y_{\nu n}^{0} \overline{l_{L}^{0}} \widetilde{H^{0}} N_{n}^{0} + \text{h.c.} \right)$$

• Then the renormalized fields are,

• At one-loop we use the self-interaction divergances to determine the Z values

1-Loop Renormalization in the Type-I Seesaw

• The simplest renormalization group equations are then,

$$-16\pi^{2} \frac{d^{\binom{n}{\kappa}}(t)}{dt} = \binom{\binom{n}{y_{\nu}}(t) \binom{n}{y_{\nu}}(t)^{\dagger}}{\kappa(t)} \kappa(t) + \binom{\binom{n}{\kappa}}{\kappa(t)} \binom{\binom{n}{y_{\nu}}(t) \binom{n}{y_{\nu}}(t)^{\dagger}}{y_{\nu}}^{T} + \binom{\binom{n}{\kappa}}{\alpha_{\kappa}}(t) \binom{\binom{n}{\kappa}}{\kappa(t)},$$

$$-16\pi^{2} \frac{d^{\binom{n}{y_{\nu}}}(t)}{dt} = \left(\frac{3}{2} \binom{\binom{n}{y_{\nu}}}{(t)} \binom{\binom{n}{y_{\nu}}}{(t)}^{T} \binom{\binom{n}{\gamma}}{W_{R}}(t) + \binom{\binom{n}{y_{\nu}}}{M_{R}}(t) \binom{\binom{n}{y_{\nu}}}{(t)}^{T} \binom{\binom{n}{y_{\nu}}}{(t)}^{T} \binom{\binom{n}{\gamma}}{W_{\nu}}(t),$$

$$-16\pi^{2} \frac{d^{\binom{n}{M_{R}}}(t)}{dt} = \binom{\binom{n}{y_{\nu}}}{(t)} \binom{\binom{n}{y_{\nu}}}{(t)}^{T} \binom{\binom{n}{\gamma}}{M_{R}}(t) + \binom{\binom{n}{\gamma}}{M_{R}}(t) \binom{\binom{n}{y_{\nu}}}{(t)} \binom{\binom{n}{\gamma}}{(t)} \binom{n}{y_{\nu}}}(t),$$

• With the solutions,

$$\begin{split} {}^{(n)}_{\kappa}(t_f) &= e^{-\frac{1}{16\pi^2} \int_{t_i}^{t_f} \frac{(n)}{\alpha_{\kappa}}(s) ds} \overset{(n)}{W}(t_f - t_i) \overset{(n)}{\kappa}(t_i) \overset{(n)}{W}(t_f - t_i)^T, \\ {}^{(n)}_{y_{\nu}}(t_f) &= e^{-\frac{1}{16\pi^2} \int_{t_i}^{t_f} \frac{(n)}{\alpha_{y_{\nu}}}(s) ds} \overset{(n)}{U}(t_f - t_i) \overset{(n)}{y_{\nu}}(t_i), \\ {}^{(n)}_{M_R}(t_f) &= \overset{(n)}{K}(t_f - t_i) \overset{(n)}{M_R}(t_i) \overset{(n)}{K}(t_f - t_i)^T. \end{split}$$

$$\begin{split} \overset{(n)}{W}(t_f - t_i) &\equiv T \exp\left[-\frac{1}{16\pi^2} \int_{t_i}^{t_f} \frac{(n)}{2}(y_{\nu}^{(n)}(s) \overset{(n)}{y_{\nu}}(s)^\dagger) ds\right], \\ {}^{(n)}_{M_R}(t_f) &= \overset{(n)}{K}(t_f - t_i) \overset{(n)}{M_R}(t_i) \overset{(n)}{K}(t_f - t_i)^T. \end{split}$$

How many heavy, right-handed fermions?

- In the Type-I Seesaw we choose the number of heavy, right-handed fermions
- The minimal choice allowed by experiments is the 3-2 Type-I Seesaw model

How many heavy, right-handed fermions?

- In the Type-I Seesaw we choose the number of heavy, right-handed fermions
- The minimal choice allowed by experiments is the 3-2 Type-I Seesaw model

The massless neutrino

• The 3-2 model has a popular understanding that the lightest neutrino is massless

- To prove this we start at energy equal to the heaviest mass
 - Then the heaviest right-handed fermion is integrated out and we match the effective theory (2) with the full theory at tree level

$$m_{eff}(0) = m_{eff}^{(2)}(0)$$
$$-\frac{v^2}{2}y_{\nu}(0)\frac{1}{M_R(0)}y_{\nu}^T(0) = -\frac{v^2}{4}\kappa^{(2)}(0) - \frac{v^2}{2}y_{\nu}^{(2)}(0)\left(\binom{(2)}{M_R(0)}\right)^{-1}\binom{(2)}{y_{\nu}(0)}^T$$

The massless neutrino

• The 3-2 model has a popular understanding that the lightest neutrino is massless

• Then we must solve RG equations for the effective theory region (2)

The massless neutrino

• The 3-2 model has a popular understanding that the lightest neutrino is massless

• Lastly, we match the effective theories in region (1) with region (2)

$$m_{eff}^{(1)}(t_1) = -\frac{v^2}{2} e^{-\frac{1}{8\pi^2} \int_0^{t_1} \alpha_{y_{\nu}}^{(2)}(s) ds} \begin{pmatrix} 2 \\ M_R(t_1) \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ U(t_1) y_{\nu 1}(0) y_{\nu 1}^T(0) \begin{pmatrix} 2 \\ U(t_1) \end{pmatrix}^T \\ \text{Kernel solution to} \\ -\frac{v^2}{2} e^{-\frac{1}{16\pi^2} \int_0^{t_1} \alpha_{\kappa}^{(2)}(s) ds} \frac{1}{M_2(0)} \begin{pmatrix} 2 \\ W(t_1) \end{pmatrix}^{-1} y_{\nu 2}(0) y_{\nu 2}^T(0) \begin{pmatrix} 2 \\ W(t_1) \end{pmatrix}^T \\ \text{Kernel solution to} \\ \text{Yukawa RG equation} \end{pmatrix}$$

Kernel solution to kappa RG equation

The massless neutrino

- In the effective theory a=1 region, the result depends on the RG equations
- To show this we calculate the rank of the effective mass matrix,

rank
$$\begin{bmatrix} n_{eff}^{(1)}(t_1) \end{bmatrix} = n$$
 n is the number of massive neutrinos

• We use the characteristic polynomial of a Hermite matrix to calculate the rank,

$$\det \left(\stackrel{(1)}{m_{eff}}(t_1) [\stackrel{(1)}{m_{eff}}(t_1)]^{\dagger} - x \right) = 0 \quad \rightarrow \quad -x^3 + x^2 I_2 - x^1 I_1 + x^0 I_0 = 0$$

$$\operatorname{rank}\left[m_{eff}^{(1)}(t_1)[m_{eff}^{(1)}(t_1)]^{\dagger}\right] = \operatorname{rank}\left[m_{eff}^{(1)}(t_1)\right] = \frac{\text{degree of the polynomial}}{\text{degree of the polynomial}} - \text{superscript of the 0 root}\right]$$

The massless neutrino

- In the effective theory a=1 region, the result depends on the RG equations
- So the rank can be determined by calculating the invariants of the characteristic polynomial and finding if any are zero

$$\det \left(\stackrel{(1)}{m_{eff}}(t_1) [\stackrel{(1)}{m_{eff}}(t_1)]^{\dagger} - x \right) = 0 \quad \rightarrow \quad -x^3 + x^2 I_2 - x^1 I_1 + x^0 I_0 = 0$$

• Most important for us is invariant I_0 , (the others are nonzero) $[m_{eff}^{(1)}(t_1)]_{ij} = m_{ij}$

$$I_0 = \mathcal{I} \times \mathcal{I}^* = 0$$

 $\mathcal{I} \equiv m_{33}(m_{11}m_{22} - m_{21}m_{12}) + m_{13}(m_{32}m_{21} - m_{31}m_{22}) + m_{32}(m_{31}m_{12} - m_{32}m_{11})$

These two terms exactly cancel the third term

$$-x^{3} + x^{2}I_{2} - x^{1}I_{1} = 0 \qquad \rightarrow \qquad \operatorname{rank}\left[m_{eff}^{(1)}(t_{1})\right] = 3 - 1 = 2$$

The massless neutrino becomes massive

• In the two-loop renormalization diagrams like this exist that change the rank of the effective mass matrix of the neutrinos,

 $m_{\rm lightest} \sim 10^{-13} {\rm eV}$

[S. Davidson, G. Isidori and A. Strumia (2007)], [Z.-z. Xing and D. Zhang (2020)]

$$16\pi^2 \frac{d\kappa}{dt} = -\frac{3}{2} \left[(y_l y_l^{\dagger})\kappa + \kappa (y_l y_l^{\dagger})^T \right] + \frac{1}{8\pi^2} (y_l y_l^{\dagger})\kappa (y_l y_l^{\dagger})^T + \cdots$$

New two-loop term that changes the rank of kappa from 2 to 3

Running down to the low energies

• We stop at the mass of M_1 and calculate the active neutrino masses

• The result is an equation for the effective mass matrix

 $m_{eff}^{(1)}(t_1) = -\frac{v^2}{4} \overset{(1)}{\kappa}(t_1) \quad \text{Expand kappa from the tree-level matching solution}$ $= -\frac{v^2}{4} \overset{(2)}{y_{\nu}}(t_1) \frac{1}{\binom{(2)}{M_R(t_1)}} \overset{(2)}{y_{\nu}}(t_1)^T - \frac{v^2}{4} e^{-\frac{1}{16\pi^2} \int_{t_2}^{t_1} ds \alpha_{\kappa}^{(2)}(s)} \overset{(2)}{W}(t_1 - t_2) \overset{(2)}{\kappa}(t_2) \overset{(2)}{W}(t_1 - t_2)^T}$ A kernel function from the solution of the kappa renormalization group equation

Running down to the low energies

• To study if the lightest active neutrino is still massless we substitute the running solutions,

Also we substitute the RG solution for the Yukawa matrix in region (2)