Experimental testability of GUT model including the mirror particles

Shonosuke Takeshita (Hiroshima University)

Collaborator : Yusuke Shimizu(Hiroshima U)

December 1st, 2022 KEK Theory Meeting on Particle Physics Phenomenology KEK-PH2022@KEK

Contents

1.Introduction

2.Our model

3.Numerical analysis

4.Summary

Introduction

The current state of particle physics 1/20

Elementary particles are well described by the standard model(SM).

SM is based on $SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$ gauge symmetries.

• The origin of neutrino mass

Strong force

Dark matter

Inflation etc.

Weak force Electromagnetic force

But there are phenomena that cannot be explained by the SM.

Physics beyond the standard model (BSM) is needed!!!

Grand Unified Theory (GUT) 2/20

The theory of embedding $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$ into a large group.

Ex). Minimal SU(5) model H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438

Unify the SM gauge interactions

$$A_{\mu} = egin{pmatrix} G_{\mu} - rac{1}{\sqrt{15}} B_{\mu} & V^{\dagger}_{\mu} \ V_{\mu} & W_{\mu} + rac{3}{2\sqrt{15}} B_{\mu} \end{pmatrix}$$

Unification of quarks and leptons

$$\overline{5} = \begin{pmatrix} d_1^c \\ d_2^c \\ d_3^c \\ e \\ -\nu \end{pmatrix}_L, \qquad 10 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u_3^c & -u_2^c & -u^1 & -d^1 \\ -u_3^c & 0 & u_1^c & -u^2 & -d^2 \\ u_2^c & -u_1^c & 0 & -u^3 & -d^3 \\ u^1 & u^2 & u^3 & 0 & e^c \\ d^1 & d^2 & d^3 & -e^c & 0 \end{pmatrix}_L$$

Unification of strong, weak , and electromagnetic forces.

$$G_{\mu}$$
 W_{μ} B_{μ}

String theory?

12/1/2022

Proton decay

Q. Is it possible to test GUT experimentally? <u>A. YES</u>

In GUT, quarks and leptons are embedded into same representations.

The GUT predicts the existence of proton decay.

The GUT can be tested by proton decay search!!!

Current experimental results Super-Kamiokande : $au_p(p o \pi^0 e^+) \gtrsim 2.4 imes 10^{34}$ years

A. Takenaka et al. Phys. Rev. D 102, 112011 (2020)

12/1/2022

The problems of GUT

Inconsistency with experimental results

 $\begin{array}{l} \mbox{Minimal SU(5) model}: \tau_p \big(p \rightarrow \pi^0 e^+ \big) \approx 10^{30} \sim 10^{31} \mbox{ years} \\ \mbox{ H. Georgi, H.R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974)} \\ \mbox{Current experimental results} \\ \mbox{Super-Kamiokande}: \tau_p \big(p \rightarrow \pi^0 e^+ \big) \gtrsim 2.4 \times 10^{34} \mbox{ years} \\ \mbox{ A. Takenaka et al. Phys. Rev. D 102, 112011 (2020)} \end{array}$

No unification of the SM gauge couplings successfully

4/20

Blue line : U(1) gauge coupling Orange line : SU(2) gauge coupling Green line : SU(3) gauge coupling

The GUT is needed some extensions!

Hierarchy

There is a large energy gap between the electroweak scale M_{EW} and the GUT scale M_{GUT} .

The possibility of new physics in intermediate scale.

Ex). New particles, New symmetries

The new physics contribute to RGE and proton lifetime.

Today's talk

6/20

We build a new GUT model based on previous study.

N. Okada, D. Raut and Q. Shafi, Phys. Rev. D 104, no.5, 055041 (2021)

Our model : $SU(5) \times U(1)_X \times U(1)_{PQ}$ model

Previous study : Add one family of the same representation of the SM particles and one mirror family.

Our study : Add only three mirror families.

We discuss the problems of GUT in terms of mass relations.

Mirror family : The conjugate of the representation of the SM particles

 $\widetilde{\psi}_5 = D^c(3, 1, -1/3) \oplus L(1, 2, -1/2)$

 $\tilde{\psi}_{\overline{10}} = U^{c}(3, 1, -2/3) \oplus Q(3^*, 2^*, 1/6) \oplus E^{c}(1, 1, 1)$

Our model

Symmetries

7/20

- U(1)_{PQ} symmetry R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977) R. D. Peccei, Lect. Notes Phys. 741, 3 (2008)
 - > Solve the strong CP problem.
 - > The candidate of dark matter. N. Okada, D. Raut and Q. Shafi, Phys. Rev. D 104, no. 5, 055041 (2021)
- U(1)_X symmetry T. Appelquist, B. A. Dobrescu and A. R. Hopper, Phys. Rev. D 68, 035012 (2003)

The definition of U(1)_X charge: $Q_X = x_H Q_Y + Q_{B-L}$

 Q_Y : Hyper charge Q_{B-L} : B—L(Baryon-Lepton) charge x_H : free parameter

In $x_H = -4/5$, we can assign the $U(1)_{\chi}$ charge to $\overline{5}$ representation and 10 representation successfully.

Matter contents of our model

$SU(5) \times U(1)_X \times U(1)_{PQ}$ model

	SU(5)	U(1) _X	U(1) _{PQ}
$\psi rac{i}{5}$	5	-3/5	0
ψ^i_{10}	10	+1/5	0
$ ilde{\psi}^i_5$	5	+3/5	1
$ ilde{\psi} rac{i}{10}$	10	-1/5	1
$(N^c)^j$	1	+1	0
Σ	24	0	-1
χ	45	-2/5	0
Φ	1	-2	0
Н	5	-2/5	0

$$\psi^i_{\overline{5}(10)}(i=1{\sim}3)$$
 : the SM particles

8/20

 $\widetilde{\psi}^i_{5(\overline{10})}(i=1{\sim}3)$: the mirror particles

 $(N^c)^j (j = 1 \sim 3)$: Majorana neutrinos

 Σ, χ, Φ, H : complex scalar fields

Scenario of symmetry breaking

9/20

Four complex scalar fields Σ, χ, Φ, H break symmetry just below.

$$SU(5) \times U(1)_{X} \times U(1)_{PQ} \xrightarrow{\langle \Sigma \rangle} SU(3)_{C} \times SU(2)_{L} \times U(1)_{X} \times U(1)_{Y}$$

$$\xrightarrow{\langle \Phi \rangle} SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$$

$$\xrightarrow{\langle H \rangle, \langle \chi \rangle} SU(3)_{C} \times U(1)_{em}$$

Yukawa interactions

In our model, there are three types of Yukawa interactions.

> Involved only the SM particles

$$\mathcal{L}_{SM} \supset \sum_{i,j=1}^{3} \left[(Y_1^{ij}H + Y_2^{ij}\chi) \psi_{10}^{i}\psi_{10}^{j} \right] + \sum_{i,j=1}^{3} \left[\left(Y_3^{ij}H^* + Y_4^{ij}\chi^* \right) \psi_{\overline{5}}^{i}\psi_{10}^{j} \right] + \text{h.c.}$$

10/20

> Involved the mirror particles

$$\mathcal{L}_{mirror} \supset \sum_{i,j=1}^{3} \widetilde{Y}_{5}^{ij} \Sigma \psi_{\overline{5}}^{i} \widetilde{\psi}_{5}^{j} + \sum_{i,j=1}^{3} \widetilde{Y}_{10}^{ij} \Sigma \psi_{10}^{i} \widetilde{\psi}_{\overline{10}}^{j} + \text{h.c.}$$

> Involved the Majorana neutrinos

$$\mathcal{L}_{neutrino} \supset -\sum_{i,j=1}^{3} Y_D^{ij} H \psi_{\overline{5}}^i (N^c)^j - \left(\frac{1}{2} \sum_{\beta=1}^{3} Y_M^\beta \Phi(N^c)^\beta (N^c)^\beta + \text{h.c.}\right)$$

KEK-PH2022@KEK

12/1/2022

Derivation of mass eigenvalues 11/20

We assume the diagonal matrices for computing up-type quark, down-type quark, and charged lepton mass eigenvalues for simplicity.

Mass relations

12/20

We get the mass relations between up-type quark mass m_{ui} and down-type quark mass m_{di} , charged lepton mass m_{ei} $(i = 1 \sim 6)$.

$$m_{d1}^2 m_{d2}^2 = \frac{m_{u1} m_{u2} (v_{\Sigma} \tilde{Y}_5^{11})^2}{240}, \quad m_{e1}^2 m_{e2}^2 = \frac{27 m_{u1} m_{u2} (v_{\Sigma} \tilde{Y}_5^{11})^2}{80}$$
$$m_{d3}^2 m_{d4}^2 = \frac{m_{u3} m_{u4} (v_{\Sigma} \tilde{Y}_5^{22})^2}{240}, \quad m_{e3}^2 m_{e4}^2 = \frac{27 m_{u3} m_{u4} (v_{\Sigma} \tilde{Y}_5^{22})^2}{80}$$
$$m_{d5}^2 m_{d6}^2 = \frac{m_{u5} m_{u6} (v_{\Sigma} \tilde{Y}_5^{33})^2}{240}, \quad m_{e5}^2 m_{e6}^2 = \frac{27 m_{u5} m_{u6} (v_{\Sigma} \tilde{Y}_5^{33})^2}{80}$$

We identify the mass eigenvalues to satisfy the mass relations.

12/1/2022

Neutrino mass eigenvalues 13/20

In neutrino case, we also assume the diagonal matrix for simplicity.

Neutrino mass relations

We get the mass relations between neutrino mass m_i and up-type quark mass m_{ui} , down-type quark mass m_{di} ($i = 1 \sim 6$).

 $m_i(i = 1 \sim 6)$: neutrino mass eigenvalues

14/20

$$m_1m_2 = \frac{9m_{d1}^2m_{d2}^2}{m_{u1}m_{u2}}, \quad m_3m_4 = \frac{9m_{d3}^2m_{d4}^2}{m_{u3}m_{u4}}, \quad m_5m_6 = \frac{9m_{d5}^2m_{d6}^2}{m_{u5}m_{u6}}$$

We can estimate the mirror neutrino masses using these neutrino mass relations.

Numerical analysis

The identification of Fermion masses 15/20

We identify the fermion masses to satisfy the mass relations and to unify the SM gauge couplings successfully.

m _{u1}	SM	m _{u2}	O(GUT)	m _{u3}	SM	m _{u4}	O(GUT)	m _{u5}	SM	m _{u6}	O(GUT)
m _{d1}	bottom quark	m _{d2}	$\mathcal{O}(10^3) \text{GeV}$	m _{d3}	SM	m _{d4}	Ø(GUT)	m _{d5}	SM	m _{d6}	Ø(GUT)
m _{e1}	electron	m_{e2}	$7.36 imes10^4 imes m_{d2}$	m _{e3}	SM	m _{e4}	Ø(GUT)	m_{e5}	SM	m _{e6}	O(GUT)

The identification of scalar masses 16/20

The 45 representation Higgs χ is composed just below.

$$\chi_{45} \sim \left(8, 2, \frac{1}{2}\right) \oplus \left(\overline{6}, 1, -\frac{1}{3}\right) \oplus \left(3, 3, -\frac{1}{3}\right) \oplus (\overline{3}, 2, -7/6) \oplus (3, 1, -1/3) \oplus (\overline{3}, 1, 4/3) \oplus (1, 2, 1/2)$$

$$\Phi_1 \qquad \Phi_2 \qquad \Phi_3 \qquad \Phi_4 \qquad \Phi_5 \qquad \Phi_6 \qquad H_2$$

To unify the SM gauge couplings successfully, we assume that Φ_1 has mass $M_1 = \mathcal{O}(10^3)$ GeV and Φ_3 has mass $M_3 = \mathcal{O}(10^9)$ GeV. (The other scalars have GUT scale masses.)

The relation of new particles

We assume m_{d2} and M_1 have the same mass.

- The relation between $M_1(m_{d2})$ and proton lifetime
- The relation between $M_1(m_{d2})$ and M_3

Green : Accuracy of unification 1%

17/20

Blue : Accuracy of unification 3%

Purple : Excluded regions of M_1 ($M_1 > 1$ TeV) V. Miralles and A. Pich, arXiv : 1910.07947

Yellow : Excluded regions of m_{d2} (m_{d2} >1570GeV)

R.L. Workman et al, Particle Data Group(2022)

Gray : Super-Kamiokande $au_p(p o \pi^0 e^+) \gtrsim 2.4 imes 10^{34}$ years A. Takenaka et al. Phys. Rev. D 102, 112011 (2020)

Red : Hyper-Kamiokande $au_p(p o \pi^0 e^+) \lesssim 1.0 imes 10^{35}$ years

Unification of the SM gauge couplings 18/20

Benchmark point :

$$m_{d2} = M_1 = 5$$
TeV,
 $m_{e2} = 7.36 \times 10^4 \times m_{d2} = 3.7 \times 10^8$ GeV,
 $M_3 = 2 \times 10^9$ GeV

$$M_{GUT} \approx 7.9 \times 10^{15} \text{GeV}$$

 $\alpha_{GUT} = \alpha_1 = \alpha_2 = \alpha_3 \approx 1/31.6$
 $\tau_p (p \to \pi^0 e^+) \approx \frac{1}{\alpha_{GUT}^2} \frac{M_{GUT}^4}{m_p^5} \approx 8.86 \times 10^{34} \text{ years}$
P. Nath and P. Fileviez Perez, Phys. Rept. 441, 191 (2007)

Black : SM Red : Our model

12/1/2022

Heavy neutrino masses

Using benchmark point($m_{u2} = M_{GUT} = 7.9 \times 10^{15} \text{GeV}, m_{d1} = 4.18 \text{GeV}, m_{d2} = 5 \text{TeV}$), we estimate heavy neutrino masses.

R.L. Workman et al, Particle Data Group(2022)

Ex). $m_{u1} = 172.69$ GeV(top quark)

 $m_1m_2 = 2.88 \times 10^9 (eV)^2$ $m_1 m_2 = \frac{9m_{d1}^2 m_{d2}^2}{m_{u1} m_{u2}}$ Substitute the upper bound of the lightest neutrino mass. Planck (2018) NuFIT v5.1 Inverted ordering : $m_{lightest} < 0.016eV$ Normal ordering : $m_{lightest} < 0.03 \text{eV}$ $\rightarrow m_{heavv} > 180.13 \text{GeV}$ • $m_{heavy} > 96.1 \mathrm{GeV}$

Summary

- We assume new particles in intermediate scale from mass relations. Then, the SM gauge couplings unify successfully at high energy and our model can be tested by Hyper-Kamiokande experiment.
- We estimate heavy neutrino masses from neutrino mass relations.
- In future work, we discuss dark matter and inflation etc.

Backup

Accuracy of unification

The SM gauge couplings α_1 , α_2 , and α_3

We assume
$$r_{12} = \frac{\alpha_2}{\alpha_1}$$
, $r_{23} = \frac{\alpha_3}{\alpha_2}$.

If $0.99 < \frac{r_{23}}{r_{12}} < 1.01$, accuracy of unification is 1% or less. If $0.97 < \frac{r_{23}}{r_{12}} < 1.03$, accuracy of unification is 3% or less.

The comparison about M_{GUT} and α_{GUT}

- The relation between $M_1(m_{d2})$ and $M_{
m GUT}$

- The relation between $M_1(m_{d2})$ and $\alpha_{
m GUT}$

The calculation of beta function

The contributions of new particles are added from the mass of each particle.

Beta coefficient :
$$b_i = -\frac{11}{3}N + \frac{2}{3}T(R_f)N_f^c + \frac{1}{3}T(R_s)N_s$$
 (*i* = 1~3)

N: N of SU(N) group N_f^c : the number of chiral fermion N_s : the number of complex scalar

$$T(R) = \operatorname{Tr}[L^{i}L^{j}]$$

$$= \begin{cases} \frac{1}{2}\delta_{ij} \quad (R : \text{basic representation}) \\ N\delta_{ij} \quad (R : \text{adjoint representation}) \end{cases}$$

Ex). One SU(3) triplet chiral fermion case is
$$\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$$
.

Vacuum Expectation Value(VEV)

• The VEV of 5 representation Higgs: $\langle H \rangle = (0, 0, 0, 0, \frac{v}{\sqrt{2}})$

• The VEV of 24 representation Higgs : $<\Sigma>=\frac{v_{\Sigma}}{2\sqrt{15}}$ Diag (-2, -2, -2, 3, 3)

- The VEV of 1 representation Higgs : $<\Phi>=\frac{v_{\Phi}}{\sqrt{2}}$
- The 45 representation Higgs : $\chi_{c}^{ab} = -\chi_{c}^{ba}$, $\chi_{a}^{ab} = 0(a, b, c = 1 \sim 5)$ its VEV: $\langle \chi \rangle_{1}^{15} = \langle \chi \rangle_{2}^{25} = \langle \chi \rangle_{3}^{35} = \frac{v_{\chi}}{\sqrt{2}}$, $\langle \chi \rangle_{4}^{45} = -\frac{3v_{\chi}}{\sqrt{2}}$

Neutrino mass relations

•
$$m_{u1} = 2.16 \text{MeV}(\text{up quark})$$

$$m_1m_2=\frac{9m_{d1}^2m_{d2}^2}{m_{u1}^2m_{u2}^2}$$

$$m_1 m_2 = 2.3 \times 10^{14} (eV)^2$$

•
$$m_{u1} = 1.27 \text{GeV}(\text{charm quark})$$

$$m_1m_2 = 3.92 \times 10^{11} (\text{eV})^2$$

•
$$m_{u1} = 172.69 \text{GeV}(\text{top quark})$$

 $m_1 m_2 = 2.88 \times 10^9 (\text{eV})^2$

Heavy neutrino mass

Normal ordering : $m_{lightest} < 0.03 \text{eV}$

• $m_{u1} = 2.16 \text{MeV}(\text{up quark})$

 $m_{heavy} > 7.68 imes 10^6 {
m GeV}$

• $m_{u1} = 1.27 \text{GeV}(\text{charm quark})$

 $m_{heavy} > 1.31 \times 10^4 {
m GeV}$

• $m_{u1} = 172.69 \text{GeV}(\text{top quark})$

 $m_{heavy} > 96.1 \text{GeV}$

Inverted ordering : $m_{lightest} < 0.016 \text{eV}$

• $m_{u1} = 2.16 \text{MeV}(\text{up quark})$

 $m_{heavy} > 1.44 imes 10^7 {
m GeV}$

•
$$m_{u1} = 1.27 \text{GeV}(\text{charm quark})$$

 $m_{heavy} > 2.45 \times 10^4 \text{GeV}$

•
$$m_{u1} = 172.69 \,\text{GeV}(\text{top quark})$$

 $m_{heavy} > 180.13 {\rm GeV}$

12/1/2022

Mass eigenvalues

• Up-type quark

$$m_{u1,2} = \frac{1}{480} \left[17 \left(v_{\Sigma} \tilde{Y}_{10}^{11} \right)^2 + 1920 \left(v_{H} Y_{11}^{11} \right)^2 \pm \sqrt{-64 v_{\Sigma}^2 \left(\tilde{Y}_{10}^{11} \right)^4 + \left\{ 17 \left(v_{\Sigma} \tilde{Y}_{10}^{11} \right)^2 + 1920 \left(v_{H} Y_{11}^{11} \right)^2 \right\}^2} \right]$$

Down-type quark

 $m_{d1,2} = \frac{1}{120} \left[15m_{u1}m_{u2} + 15\left(v_H Y_3^{11} + 2v_\chi Y_4^{11}\right)^2 + \left(v_\Sigma \widetilde{Y}_5^{11}\right)^2 \pm \sqrt{-60m_{u1}m_{u2}(v_\Sigma \widetilde{Y}_5^{11})^2 + \left\{15m_{u1}m_{u2} + 15\left(v_H Y_3^{11} + 2v_\chi Y_4^{11}\right)^2 + \left(v_\Sigma \widetilde{Y}_5^{11}\right)^2\right\}^2} \right]$

Charged lepton

$$m_{e1,2} = \frac{1}{160} \left[720m_{u1}m_{u2} + 20(v_H Y_3^{11} - 6v_\chi Y_4^{11})^2 + 3(v_\Sigma \widetilde{Y}_5^{11})^2 \pm \sqrt{-8640m_{u1}m_{u2}(v_\Sigma \widetilde{Y}_5^{11})^2 + \left\{ 720m_{u1}m_{u2} + 20(v_H Y_3^{11} - 6v_\chi Y_4^{11})^2 + 3(v_\Sigma \widetilde{Y}_5^{11})^2 \right\}^2} \right]^2$$

Neutrino

$$m_{1,2} = \frac{1}{2\sqrt{2}v_{\Phi}Y_{M}^{1}} \left[(v_{H}Y_{D}^{1})^{2} \pm \sqrt{(v_{H}Y_{D}^{1})^{4} + \frac{72(m_{d1}m_{d2}v_{\Phi}Y_{M}^{1})^{2}}{m_{u1}m_{u2}}} \right]$$

12/1/2022

The Yukawa interactions of the SM particles

$$M_{U} = \frac{1}{\sqrt{2}} \left[2 \left(Y_{1} + Y_{1}^{T} \right) v_{H} - 4 (Y_{2} - Y_{2}^{T}) v_{\chi} \right]$$

$$M_{D} = \frac{1}{2} (Y_{3}^{T} v_{H}^{*} + 2Y_{4}^{T} v_{\chi}^{*})$$

$$M_{E} = \frac{1}{2} (Y_{3} v_{H}^{*} - 6Y_{4} v_{\chi}^{*})$$
The mass difference between M_{D} and M_{E} .

The product of SU(5) representations

 $5 \times 5 = 10 + 15$ $\overline{5} \times 10 = 5 + \overline{45}$ $10 \times 10 = \overline{5} + 45 + 50$ $10 \times \overline{10} = 1 + 24 + 75$