Swampland program from amplitudes: gravitational positivity bounds

Junsei Tokuda (IBS, CTPU/ Kobe U.)

Based on:
[JHEP11(2020)054 JT, K. Aoki, S. Hirano]
[PRL127,091602(2021), K. Aoki, T.Q. Loc. T. Noumi, JT]
[PRD104,066022(2021) T. Noumi, JT]
[arXiv: 2205.12835 T. Noumi, S. Sato, JT]

Introduction

- I think it would be very exciting if we can verify

What is the quantum gravity theory?

- We need predictions which can be tested experimentally.
- Very difficult. $M_{\mathrm{pl}} \sim 10^{18} \mathrm{GeV}$: Very high.
> Phenomenology (@E<< M_{pl}) \rightarrow QFT coupled to gravity in 4D. These models = effective field theories (EFTs).

Introduction

- I think it would be very exciting if we can verify

What is the quantum gravity theory?

- We need predictions which can be tested experimentally.
- Very difficult. $M_{\mathrm{pl}} \sim 10^{18} \mathrm{GeV}$: Very high.
$>$ Phenomenology (@E<<M$\left.M_{\mathrm{pl}}\right) \rightarrow$ QFT coupled to gravity in 4D. These models $=$ effective field theories (EFTs).
- But, hidden predictions may exist. \rightarrow Swampland program: [C. Vafa ('05)]
"Not all consistent-looking EFTs are consistent with quantum gravity." * Inconsistent EFTs are said to be in the Swampland.

Hidden predictions exist! (without gravity)

- S-matrix Unitarity has been useful for finding new physics.

W-boson scattering \rightarrow Unitarity predicts (Higgs mass) $\lesssim 1 \mathrm{TeV}$
Euler-Heisenberg: $\quad \mathcal{L} \sim-F^{2}+\frac{c_{2}}{m_{e}^{4}} F^{4}+\cdots$
[Lee-Quigg-Thacker ('77)]

Unitarity requires new physics below $E \sim m_{e}$.
*UV completed to QED by an electron.

Hidden predictions exist! (without gravity)

- S-matrix Unitarity has been useful for finding new physics.

W-boson scattering \rightarrow Unitarity predicts (Higgs mass) $\lesssim 1 \mathrm{TeV}$
Euler-Heisenberg: $\quad \mathcal{L} \sim-F^{2}+\frac{c_{2}}{m_{e}^{4}} F^{4}+\cdots$
[Lee-Quigg-Thacker ('77)]

Unitarity requires new physics below $E \sim m_{e}$.
*UV completed to QED by an electron.

- S-matrix Unitarity + Analyticity etc.
\rightarrow More information on UV theory: "Positivity bounds"
[Adams - Arkani-Hamed - Dubovsky - Nicolis - Rattazzi ('06)]
[Pham -Truong ('85)]

$$
\text { e.g.) } \mathcal{L} \sim-F^{2}+\frac{c_{2}}{m_{e}^{4}} F^{4}+\cdots
$$

$c_{2}>0$
"Hidden prediction" of UV completion.

Introduction

- We've been working on "Gravitational positivity bounds" as a tool to provide such hidden predictions.
- Great: It follows from general properties of S-matrix.
- Not good: It is unclear how robust the general properties are.

Introduction

- We've been working on "Gravitational positivity bounds" as a tool to provide such hidden predictions.
- Great: It follows from general properties of S-matrix.
- Not good: It is unclear how robust the general properties are.
- Talk plan:
§1. Formulation of gravitational positivity bounds. (7 pages)
§ II. Implication (1 page)
\checkmark Bounds on renormalizable interactions!

Introduction

- We've been working on "Gravitational positivity bounds" as a tool to provide such hidden predictions.
- Great: It follows from general properties of S-matrix.
- Not good: It is unclear how robust the general properties are.
- Talk plan:
§ I. Formulation of gravitational positivity bounds. (7 pages)
§ II. Implication (1 page)
\checkmark Bounds on renormalizable interactions!
(My opinion): Not well established yet, but very interesting!

§ I. Formulation

1. Positivity bounds without gravity (Review)

2. Gravitational positivity bounds § II. Implications

Positivity bound without gravity (1/3)

- Let's consider $\gamma \gamma \rightarrow \gamma \gamma$ amplitude $\mathcal{M}(s, t) . \quad{ }^{*} s \sim(\text { CM energy })^{2}$
- UV complete theory: Local, Unitary, Lorentz invariant, Causal. $\longrightarrow \mathcal{M}(s, t)$ behaves well at high energies.
Euler-Heisenberg

$$
\mathcal{L}_{\mathrm{EH}}[\gamma] \ni \frac{c_{2}}{m_{e}^{4}} F^{4}
$$

$\sim \alpha^{2} \log ^{2}\left(m_{e}^{2} / s\right)$

$$
\sim \frac{c_{2}}{m_{e}^{4}} s^{2}
$$

Positivity bound without gravity (1/3)

- Let's consider $\gamma \gamma \rightarrow \gamma \gamma$ amplitude $\mathcal{M}(s, t) . \quad{ }^{*} s \sim\left(\mathrm{CM}\right.$ energy) ${ }^{2}$
- UV complete theory: Local, Unitary, Lorentz invariant, Causal. $\longrightarrow \mathcal{M}(s, t)$ behaves well at high energies.
Euler-Heisenberg

$$
\mathcal{L}_{\mathrm{EH}}[\gamma] \ni \frac{c_{2}}{m_{e}^{4}} F^{4}
$$

$\sim \alpha^{2} \log ^{2}\left(m_{e}^{2} / s\right)$

Embedding is possible if and only if $c_{2}>0$.

$\sim \frac{c_{2}}{m_{e}^{4}} s^{2}$

Positivity bound without gravity (2/3)

- Analyticity of $\mathcal{M}(s, t)$ relates the UV amplitude to IR amplitude.

$\int_{\mathcal{C}_{r}} \frac{\mathrm{~d} s}{2 \pi i} \frac{\mathcal{M}(s, 0)}{s^{3}}$

Positivity bound without gravity (2/3)

- Analyticity of $\mathcal{M}(s, t)$ relates the UV amplitude to IR amplitude.

$\int_{\mathcal{C}_{r}} \frac{\mathrm{~d} s}{2 \pi i} \frac{\mathcal{M}(s, 0)}{s^{3}}$
$=c_{2}$, EFT calculable
$\mathcal{M}(s, t) \sim c_{0} s^{0}+\boldsymbol{c}_{2} s^{2}+\cdots$

Positivity bound without gravity (2/3)

- Analyticity of $\mathcal{M}(s, t)$ relates the $U V$ amplitude to IR amplitude.

Contour deformation

$$
\begin{aligned}
& \int_{\mathcal{C}_{r}} \frac{\mathrm{~d} s}{2 \pi i} \frac{\mathcal{M}(s, 0)}{s^{3}} \\
& =c_{2}, \text { EFT calculable }
\end{aligned}
$$

$\mathcal{M}(s, t) \sim c_{0} s^{0}+\boldsymbol{c}_{2} s^{2}+\cdots$

Positivity bound without gravity (2/3)

- Analyticity of $\mathcal{M}(s, t)$ relates the UV amplitude to IR amplitude.

$$
\int_{\mathcal{C}_{r}} \frac{\mathrm{~d} s}{2 \pi i} \frac{\mathcal{M}(s, 0)}{s^{3}}=\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}+\oint_{C_{\infty}} \frac{\mathrm{d} s}{2 \pi i} \frac{\mathcal{M}(s, 0)}{s^{3}}
$$

$=c_{2}$, EFT calculable
$\mathcal{M}(s, t) \sim c_{0} s^{0}+\boldsymbol{c}_{2} s^{2}+\cdots$

Positivity bound without gravity (2/3)

- Analyticity of $\mathcal{M}(s, t)$ relates the UV amplitude to IR amplitude.

$$
\begin{aligned}
& \int_{\mathcal{C}_{r}} \frac{\mathrm{~d} s}{2 \pi i} \frac{\mathcal{M}(s, 0)}{s^{3}}=\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}+\oint_{c_{\infty}} \frac{\mathrm{d} s}{2 \pi i} \frac{\mathcal{M}(s, 0)}{s^{3}} \\
& =c_{2}, \text { EFT calculable }>0 \text { (Unitarity) }
\end{aligned}
$$

$\mathcal{M}(s, t) \sim c_{0} s^{0}+\boldsymbol{c}_{2} s^{2}+\cdots$

Positivity bound without gravity (2/3)

- Analyticity of $\mathcal{M}(s, t)$ relates the UV amplitude to IR amplitude.

$$
\begin{aligned}
& \int_{\mathcal{C}_{r}} \frac{\mathrm{~d} s}{2 \pi i} \frac{\mathcal{M}(s, 0)}{s^{3}}=\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}+\oint_{c_{\infty}} \frac{\mathrm{d} s \operatorname{M}(6,0)}{2 \pi i} s^{3} \\
& =c_{2} \text {, EFT calculable }>0 \text { (Unitarity) } \quad \underset{\lim _{|s| \rightarrow \infty}\left|\mathcal{M}(s, 0) / s^{2}\right|}{ }=0
\end{aligned}
$$

$\mathcal{M}(s, t) \sim c_{0} s^{0}+\boldsymbol{c}_{2} s^{2}+\cdots$

Positivity bound without gravity (2/3)

- Analyticity of $\mathcal{M}(s, t)$ relates the UV amplitude to IR amplitude.

$$
\begin{aligned}
& \int_{\mathcal{C}_{r}} \frac{\mathrm{~d} s}{2 \pi i} \frac{\mathcal{N}(s, 0)}{s^{3}}=\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{N}(s, 0)}{s^{3}}+\oint_{c_{\infty}} \frac{\mathrm{d} s \mathcal{M}(f), 0)}{2 \pi / s^{3}}>\mathbf{0} . \\
& =c_{2} \text {, EFT calculable }>0 \text { (Unitarity) }
\end{aligned}
$$

$\mathcal{M}(s, t) \sim c_{0} s^{0}+\boldsymbol{c}_{2} s^{2}+\cdots$

Positivity bound without gravity (3/3)

- "Positivity bounds" (without gravity)

$$
\boldsymbol{c}_{\mathbf{2}}=\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}>\mathbf{0}
$$

[Pham+('85), Adams+('06)]

Positivity bound without gravity (3/3)

- "Positivity bounds" (without gravity)

$$
\boldsymbol{c}_{\mathbf{2}}=\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}>\mathbf{0}
$$

[Pham+('85), Adams+('06)]

- Separate the EFT piece and high-energy piece:

$$
c_{2}(\Lambda):=c_{2}-\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\Lambda^{2}} \mathrm{~d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}
$$

* $\Lambda=$ cutoff scale of EFT.

Positivity bound without gravity (3/3)

- "Positivity bounds" (without gravity)

$$
\boldsymbol{c}_{\mathbf{2}}=\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}>\mathbf{0}
$$

[Pham+('85), Adams+('06)]

- Separate the EFT piece and high-energy piece:
$c_{2}(\Lambda):=c_{2}-\frac{2}{\pi} \int_{4 m_{e}^{2}}^{\Lambda^{2}} \mathrm{~d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}$
* $\Lambda=$ cutoff scale of EFT.
$\boldsymbol{c}_{2}(\Lambda)=\frac{2}{\pi} \int_{\Lambda^{2}}^{\infty} \mathrm{d} \boldsymbol{s} \frac{\operatorname{Im} \boldsymbol{\mathcal { M }}(\boldsymbol{s}, \mathbf{0})}{\boldsymbol{s}^{3}}>0$. "Improved positivity bounds"

§ I. Formulation

1. Positivity bounds without gravity (Review)

2. Gravitational positivity bounds

Subtlety with Gravity

- Quantum gravity S-matrix: not fully understood. c.f.) [Haring+('22)]
- Feature: t-channel graviton exchange grows as fast as s^{2},

Subtlety with Gravity

- Quantum gravity S-matrix: not fully understood. c.f.) [Haring+(22)]
- Feature: t-channel graviton exchange grows as fast as s^{2},

- UV behavior is softened by tower of higher-spin states in treelevel string amplitude, $\mathcal{M} \sim \frac{1}{M_{\mathrm{pl}}^{2} t} s^{2+\alpha^{\prime} t}<s^{2}$: Regge behavior. $\underset{{ }^{\prime} \alpha^{\prime}>0}{ }$

Subtlety with Gravity

- Quantum gravity S-matrix: not fully understood. c.f.) [Haring+(22)]
- Feature: t-channel graviton exchange grows as fast as s^{2},

$$
\mathcal{N}(s, t) \ni \underset{\gamma \sim m_{i}}{\gamma \min _{\gamma}} \sim \frac{s^{2}}{M_{\mathrm{p} 1}^{2} t}
$$

- UV behavior is softened by tower of higher-spin states in treelevel string amplitude, $\mathcal{M} \sim \frac{1}{M_{\mathrm{pl}}^{2} t} s^{2+\alpha^{\prime} t}<s^{2}$: Regge behavior. $\underset{{ }^{\prime} \alpha^{\prime}>0}{ }$
- We assume this property. Can we derive positivity bound?

The setup we consider

```
mass
#
    tower
Other QFT
states (if any)
me
0 L h, \gamma in EFTs
Higher-spin
tower
\[
\begin{gathered}
M_{\mathrm{s}} \text { 士 } \\
\Lambda \text { 士 } \\
\Lambda
\end{gathered}
\]
```

EFT (QFT + gravity in 4D)

UV completion with Reggeization

$$
\mathcal{M} \sim \frac{1}{M_{\mathrm{pl}}^{2} t} s^{2+\alpha^{\prime} t}<s^{2}
$$

EFT (QFT + gravity in 4D)

$$
\text { e.g.) } \mathcal{L} \sim M_{\mathrm{pl}}^{2} R+\mathcal{L}_{\text {matter }}\left[\gamma, e^{-}, \ldots\right]
$$

The setup we consider

EFT (QFT + gravity in 4D)

$$
\text { e.g.) } \mathcal{L} \sim M_{\mathrm{pl}}^{2} R+\mathcal{L}_{\text {matter }}\left[\gamma, e^{-}, \ldots\right]
$$

The setup we consider

mass

UV completion with Reggeization

$$
\mathcal{M} \sim \frac{1}{M_{\mathrm{pl}}^{2} t} s^{2+\alpha^{\prime} t}<s^{2}
$$

EFT (QFT + gravity in 4D)

$$
\text { e.g.) } \mathcal{L} \sim M_{\mathrm{pl}}^{2} R+\mathcal{L}_{\text {matter }}\left[\gamma, e^{-}, \ldots\right]
$$

- We work in weakly-coupled regime of gravity up to $\mathcal{O}\left(M_{\mathrm{pl}}^{-2}\right)$

Positivity bounds with Gravity (1/2)

- The sum rule for $c_{2}(\Lambda)$ contains graviton \boldsymbol{t}-channel pole:

$$
\begin{aligned}
& c_{2}(\Lambda)= \lim _{t \rightarrow 0^{-}}\left\{\int_{\Lambda^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{N}(s, t)}{s^{3}}+\frac{\mathbf{1}}{\boldsymbol{M}_{\mathbf{p 1}}^{2} \boldsymbol{t}}\right\}=" \infty-\infty " \stackrel{?}{>} \mathbf{0} \\
& \mathcal{M}(s, t) \sim(s, t, u \text { poles })+c_{2} s^{2}+\cdots \\
& \ni\left[\frac{-1}{M_{\mathrm{pl}}^{2} t}+c_{2}\right] s^{2}
\end{aligned}
$$

Positivity bounds with Gravity (1/2)

- The sum rule for $c_{2}(\Lambda)$ contains graviton \boldsymbol{t}-channel pole:

$$
\begin{aligned}
& c_{2}(\Lambda)= \lim _{t \rightarrow 0^{-}}\left\{\int_{\Lambda^{2}}^{\infty} \mathrm{d} \frac{\operatorname{Im} \mathcal{N}(s, t)}{s^{3}}+\frac{\mathbf{1}}{\boldsymbol{M}_{\mathbf{p 1}}^{2} \boldsymbol{t}}\right\}=" \infty-\infty " \stackrel{?}{>} 0 \\
& \mathcal{M}(s, t) \sim(s, t, u \text { poles })+c_{2} s^{2}+\cdots \quad \ni\left[\frac{-1}{M_{\mathbf{p l}}^{2} t}+c_{2}\right] s^{2}
\end{aligned}
$$

- Key: The graviton t^{-1} pole is canceled by the first term due to the Regge behavior $\operatorname{Im} \mathcal{M} \simeq f(t) s^{2+\alpha^{\prime} t+\alpha^{\prime \prime} t^{2} / 2 \cdots} @ s \gg M_{s}^{2}$.

Positivity bounds with Gravity (1/2)

- The sum rule for $c_{2}(\Lambda)$ contains graviton \boldsymbol{t}-channel pole:

$$
c_{2}(\Lambda)=\lim _{t \rightarrow 0^{-}}\left\{\int_{\Lambda^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, t)}{s^{3}}+\frac{\mathbf{1}}{\boldsymbol{M}_{\mathbf{p} \mathbf{1}}^{\mathbf{2}} \boldsymbol{t}}\right\}=" \infty-\infty " \stackrel{?}{>} 0
$$

- Key: The graviton t^{-1} pole is canceled by the first term due to the Regge behavior $\operatorname{Im} \mathcal{M} \simeq f(t) s^{2+\alpha^{\prime} t+\alpha^{\prime \prime} t^{2} / 2 \cdots} @ s \gg M_{\mathrm{s}}^{2}$.

Positivity bounds with Gravity (1/2)

- The sum rule for $c_{2}(\Lambda)$ contains graviton \boldsymbol{t}-channel pole:

$$
\begin{gathered}
c_{2}(\Lambda)=\lim _{t \rightarrow 0^{-}}\left\{\int_{\Lambda^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, t)}{s^{3}}+\frac{\mathbf{1}}{\boldsymbol{M}_{\mathbf{p} \mathbf{1}}^{\mathbf{t}}}\right\}=" \infty-\infty \infty^{\prime} \stackrel{?}{>} \mathbf{0} \\
\int_{s_{*} \gg M_{s}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, t)}{s^{3}} \sim \int_{S_{*} \gg M_{s}^{2}}^{\infty} \mathrm{d} s \frac{s^{2+\alpha^{\prime} t+\cdots}}{s^{3}}
\end{gathered}
$$

- Key: The graviton t^{-1} pole is canceled by the first term due to the Regge behavior $\operatorname{Im} \mathcal{M} \simeq f(t) s^{2+\alpha^{\prime} t+\alpha^{\prime \prime} t^{2} / 2 \cdots} @ s \gg M_{s}^{2}$.

Positivity bounds with Gravity (1/2)

- The sum rule for $c_{2}(\Lambda)$ contains graviton \boldsymbol{t}-channel pole:

$$
\begin{aligned}
& c_{2}(\Lambda)=\lim _{t \rightarrow 0^{-}}\left\{\int_{\Lambda^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{N}(s, t)}{s^{3}}+\frac{\mathbf{1}}{\boldsymbol{M}_{\mathbf{p} \mathbf{1}}^{2} \boldsymbol{t}}\right\}=" \infty-\infty " \stackrel{?}{>} 0 \\
& \int_{s_{*} \gg M_{s}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, t)}{s^{3}} \sim \int_{s_{*} \gg M_{s}^{2}}^{\infty} \mathrm{d} s \frac{s^{2+\alpha^{\prime} t+\cdots}}{s^{3}}=\frac{\boldsymbol{-}}{\boldsymbol{s}_{*}} \boldsymbol{\boldsymbol { \alpha } ^ { \prime } \boldsymbol { t }}+\mathcal{O}\left(t^{0}\right) .
\end{aligned}
$$

- Key: The graviton t^{-1} pole is canceled by the first term due to the Regge behavior $\operatorname{Im} \mathcal{M} \simeq f(t) s^{2+\alpha^{\prime} t+\alpha^{\prime \prime} t^{2} / 2 \cdots} @ s \gg M_{s}^{2}$.

Positivity bounds with Gravity (1/2)

- The sum rule for $c_{2}(\Lambda)$ contains graviton \boldsymbol{t}-channel pole:

$$
\begin{aligned}
& c_{2}(\Lambda)=\lim _{t \rightarrow 0^{-}}\left\{\int_{\Lambda^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{N}(s, t)}{s^{3}}+\frac{\mathbf{1}}{\boldsymbol{M}_{\mathbf{p} \mathbf{t}}^{2} t}\right\}=" \infty-\infty " \stackrel{?}{>} 0 \\
& \int_{s_{*} \gg M_{s}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, t)}{s^{3}} \sim \int_{s_{*} \gg M_{s}^{2}}^{\infty} \mathrm{d} s \frac{s^{2+\alpha^{\prime} t+\cdots}}{s^{3}}=\frac{-\boldsymbol{s}_{*}}{\boldsymbol{\alpha}^{\prime} \boldsymbol{t}}+\mathcal{O}\left(t^{0}\right) .
\end{aligned}
$$

- Key: The graviton t^{-1} pole is canceled by the first term due to the Regge behavior $\operatorname{Im} \mathcal{M} \simeq f(t) s^{2+\alpha^{\prime} t+\alpha^{\prime \prime} t^{2} / 2 \cdots} @ s \gg M_{s}^{2}$.
- After confirming the cancellation, we compute the $\mathcal{O}\left(t^{0}\right)$ term.

$$
\left.c_{2}(\Lambda)=\int_{\Lambda^{2}}^{\int_{>0}^{s_{*}} \mathrm{~d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}+\frac{1}{M_{\mathrm{pl}}^{2}}} \underset{<0 \text { (unitarity) }}{\left[-\frac{\left.2 \partial_{t} f(t)\right|_{t=0}}{f(0)}+\frac{\alpha^{\prime \prime}}{\alpha^{\prime}}\right]}\right]
$$

- Negative term = Details of the Regge behavior.

$$
c_{2}(\Lambda)=\int_{>0 \text { (unitarity) }}^{\int_{\Lambda^{2}}^{s_{*}} \mathrm{~d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}}+\frac{1}{M_{\mathrm{pl}}^{2}}\left[\frac{\left.2 \partial_{t} f(t)\right|_{t=0}}{f(0)}+\frac{\alpha^{\prime \prime}}{\alpha^{\prime}}\right]
$$

- Negative term = Details of the Regge behavior.
- $c_{2}(\Lambda)=0$ is allowed. $\quad \checkmark$ Virasoro-Shapiro amplitude: $c_{2}=0$.
(Related
discussions:
[Hamada+('18)]
[Herrero-Valea+('20)]
[Bellazzini+('19)]
[Alberte+('20,'21)]
[Caron-Huot+('21)])
- Gravitational positivity bound: [JT-Aoki-Hirano (20)]

$$
\begin{aligned}
& c_{2}(\Lambda)=\int_{\Lambda^{2}}^{\int_{*}^{s_{*}}} \mathrm{~d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}}+\frac{1}{M_{\mathrm{pl}}^{2}} {\left[-\frac{\left.2 \partial_{t} f(t)\right|_{t=0}}{f(0)}+\frac{\alpha^{\prime \prime}}{\alpha^{\prime}}\right] } \\
&<0 \text { (unitarity) }
\end{aligned}
$$

- Negative term = Details of the Regge behavior.
- $c_{2}(\Lambda)=0$ is allowed. $\quad \checkmark$ Virasoro-Shapiro amplitude: $c_{2}=0$.
- If we assume $\partial_{t} f / f, \alpha^{\prime \prime} / \alpha^{\prime} \sim \mathcal{O}\left(M_{s}^{-2}\right), \quad$ ('see also [Alberte $($ (211)])

$$
c_{2}(\Lambda)>-\mathcal{O}\left(M_{\mathrm{pl}}^{-2} \boldsymbol{M}_{\mathbf{s}}^{-\mathbf{2}}\right) . \square \text { Interesting implications! }
$$

§ I. Formulation
 1. Positivity bounds without gravity (Review)

2. Gravitational positivity bounds
§ II. Implications

- QED coupled to gravity (Review)

QED + GR

[Alberte-de Rham-Jaitly-Tolley. ('20)] (See also [Cheung+('14), Andriolo+('18), Chen+('19)])

- We focus on the $\gamma \gamma \rightarrow \gamma \gamma$ process.
- We focus on the $\gamma \gamma \rightarrow \gamma \gamma$ process.

$$
c_{2}(\Lambda)=(\text { nongrav })+(\text { grav })>-\mathcal{O}\left(M_{\mathrm{pl}}^{-2} M_{s}^{-2}\right) .
$$

(nongrav):

$$
\sim \frac{e^{4}}{\Lambda^{4}}>0
$$

(grav):
$\sim-\frac{e^{2}}{M_{\mathrm{pl}}^{2} m_{e}^{2}}<0$

- We focus on the $\gamma \gamma \rightarrow \gamma \gamma$ process.

$$
c_{2}(\Lambda)=(\text { nongrav })+(\text { grav })>-\mathcal{O}\left(M_{\mathrm{pl}}^{-2} M_{s}^{-2}\right) .
$$

(nongrav):

$$
\sim \frac{e^{4}}{\Lambda^{4}}>0
$$

(grav):

$$
\sim-\frac{e^{2}}{M_{\mathrm{pl}}^{2} m_{e}^{2}}<0
$$

$$
\begin{aligned}
\Lambda & \lesssim \sqrt{e M_{\mathrm{p} 1} m_{e}} \\
& \approx \mathcal{O}\left(10^{\mathbf{8}}\right) \mathrm{GeV} .
\end{aligned}
$$

- We focus on the $\gamma \gamma \rightarrow \gamma \gamma$ process.

$$
c_{2}(\Lambda)=(\text { nongrav })+(\text { grav })>-\mathcal{O}\left(M_{\mathrm{pl}}^{-2} M_{s}^{-2}\right) .
$$

(nongrav):

$$
\begin{aligned}
& \sim \frac{e^{4}}{\Lambda^{4}}>0 \\
& \sim-\frac{e^{2}}{M_{\mathrm{pl}}^{2} m_{e}^{2}}<0
\end{aligned}
$$

(grav):

$$
\begin{aligned}
\Lambda & \lesssim \sqrt{e M_{\mathrm{p} 1} m_{e}} \\
& \approx \mathcal{O}\left(\mathbf{1 0}^{8}\right) \mathrm{GeV} .
\end{aligned}
$$

A cutoff is too low?? $m_{e} \rightarrow 0$ limit is prohibited??

- We focus on the $\gamma \gamma \rightarrow \gamma \gamma$ process.

$$
c_{2}(\Lambda)=(\text { nongrav })+(\text { grav })>-\mathcal{O}\left(M_{\mathrm{pl}}^{-2} M_{s}^{-2}\right) .
$$

(nongrav):
(grav):

$$
\begin{aligned}
& \sim \frac{e^{4}}{\Lambda^{4}}>0 \\
& \sim-\frac{e^{2}}{M_{\mathrm{pl}}^{2} m_{e}^{2}}<0
\end{aligned}
$$

$$
\Lambda \lesssim \sqrt{e M_{\mathrm{p} 1} m_{e}}
$$

$$
\approx \mathcal{O}\left(10^{8}\right) \mathrm{GeV} .
$$

A cutoff is too low?? $m_{e} \rightarrow 0$ limit is prohibited??

- Renormalizable couplings can be constrained!
- We focus on the $\gamma \gamma \rightarrow \gamma \gamma$ process.

$$
c_{2}(\Lambda)=(\text { nongrav })+(\text { grav })>-\mathcal{O}\left(M_{\mathrm{pl}}^{-2} M_{s}^{-2}\right) .
$$

(nongrav):
(grav):

$$
\begin{aligned}
& \sim \frac{e^{4}}{\Lambda^{4}}>0 \\
& \sim-\frac{e^{2}}{M_{\mathrm{pl}}^{2} m_{e}^{2}}<0
\end{aligned}
$$

$$
\Lambda \lesssim \sqrt{e M_{\mathrm{p} 1} m_{e}}
$$

$$
\approx \mathcal{O}\left(10^{8}\right) \mathrm{GeV} .
$$

A cutoff is too low??
$m_{e} \rightarrow 0$ limit is prohibited??

- Renormalizable couplings can be constrained!
- Bounds on Standard Model \rightarrow Noumi-san's talk (tomorrow!) Dark photon \rightarrow Sato-san's talk (next talk!)

Summary

- We derived positivity bounds on gravitational EFTs.
- We imposed assumptions on quantum gravity S-matrix.

A bound on low-energy S-matrix.
= "Correlations between IR and UV physics"

- Renormalizable couplings can be constrained!
c.f.) talks by Sato-san (next talk) and Noumi-san (tomorrow)
- How robust are the properties we imposed?

backup

Summary \& Prospects

- How robust are the properties we imposed? (Amplitude)
e.g.) Can we prove the expected scaling $\partial_{t} f / f,\left|\alpha^{\prime \prime} / \alpha^{\prime}\right| \lesssim \mathcal{O}\left(M_{s}^{-2}\right)$? Explicit examples?
- Applications to other models. (Particle pheno, Cosmology) e.g.) QCD axion? Dark photon models? ...
- Any suggestions from other considerations? (String pheno)
e.g.) [Reece ('18)] suggests a lower bounds on dark photon mass.
- It is surprising that these bounds are implied by only several general properties of S-matrix.

Analyticity \& Causality c.f.) [Camanho-Edelstein-Maldacena-Zhiboedov+('14)]

- To get some intuition, let's consider a signal model.
- We have an initial signal $f_{\text {in }}(t)$ and an out-signal $f_{\text {out }}(t)$ with

$$
\begin{aligned}
& f_{\text {out }}(t)=\int_{-\infty}^{\infty} \mathrm{d} t^{\prime} S\left(t-t^{\prime}\right) f_{\text {in }}\left(t^{\prime}\right) . \\
\Leftrightarrow & \tilde{f}_{\text {out }}(\omega)=\tilde{S}(\omega) \tilde{f}_{\text {in }}(\omega), \quad S(t)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \tilde{S}(\omega) e^{-i \omega t} .
\end{aligned}
$$

- $\tilde{S}(\omega)$: S-matrix element.
- Causality implies: $S(t)=0$ for $t<0$.
$\Rightarrow \tilde{S}(\omega)=\int_{0}^{\infty} \frac{\mathrm{d} t}{2 \pi} S(t) e^{i \omega t} \quad$ Analytic in the upper half plane.

Mild behavior from Locality \& Unitarity

- Key: polynomial boundedness (PB)

$$
\boldsymbol{\mathcal { M }}(\boldsymbol{s}, \boldsymbol{t})<\boldsymbol{s}^{\boldsymbol{N}} \quad \text { as } s \rightarrow \infty, \text { : fixed } . \quad s^{N} \sim \partial^{\#} \sim \text { Locality }
$$

- Consider the partial-wave expansion

$$
\begin{aligned}
& \mathcal{M} \sim \sum_{\ell=0}^{\infty}(2 \ell+1) f_{\ell}(s) P_{\ell}(\cos \theta) \quad \gamma \bullet \longrightarrow \mid \\
& \quad>\text { Unitarity: }\left|f_{\ell}(s)\right| \leq 1 \\
& \\
& >\text { Short-range force: }\left|f_{\ell}(s)\right|<s^{N} \exp \left(-m_{e} \ell / \sqrt{s}\right) @ \text { large } \ell \\
& |\mathcal{M}(s, 0)|<\sum_{\ell=0}^{\sqrt{s} \ln s}(2 \ell+1) \sim s(\ln s)^{2} \text { as } s \rightarrow \infty . \begin{array}{l}
\text { Froissart- } \\
\text { Martin bound. }
\end{array}
\end{aligned}
$$

Example of positivity violation

- e.g) type- II superstring amplitude of identical massless boson

$$
\mathcal{M}(s, t)=-\left(s^{2} u^{2}+t^{2} u^{2}+s^{2} t^{2}\right) \frac{\Gamma\left(-\frac{\alpha^{\prime} s}{4}\right) \Gamma\left(-\frac{\alpha^{\prime} t}{4}\right) \Gamma\left(-\frac{\alpha^{\prime} u}{4}\right)}{\Gamma\left(1+\frac{\alpha^{\prime} s}{4}\right) \Gamma\left(1+\frac{\alpha^{\prime} t}{4}\right) \Gamma\left(1+\frac{\alpha^{\prime} u}{4}\right)}
$$

An infinite number of higher-spin states Reggeizes the amplitude.

$$
\begin{aligned}
& \operatorname{Im} \mathcal{M}\left(s e^{i \varepsilon}, t\right) \approx f(t)\left(\frac{\alpha^{\prime} s}{4}\right)^{2+\alpha^{\prime} t / 2} \text { for } s \gg \alpha^{\prime-1}, 0<\varepsilon \ll 1 \text {. } \\
& \begin{array}{l}
s=\frac{4 N}{\alpha^{\prime}}(N=1,2, \cdots) \\
\operatorname{spin} J=2 N+2
\end{array} \\
& f(0)=\frac{256}{\alpha^{\prime 4}},\left.\partial_{t} f(t)\right|_{t=0}=\frac{128}{\alpha^{\prime 3}} . \\
& c_{2}(\Lambda)=\lim _{t \rightarrow-0}\left\{\frac{4}{\pi} \int_{\Lambda^{2}}^{\infty} \mathrm{d} s^{\prime} \frac{\operatorname{Im} \mathcal{M}\left(s^{\prime}, t\right)}{\left(s^{\prime}+\frac{t}{2}\right)^{3}}+\frac{2}{M_{\mathrm{pl}}^{2} t}\right\}=0
\end{aligned}
$$

Strict positivity is violated, due to the exact cancellation.
$($ Regge states $)-($ graviton t-pole $)=0$

Remark(1/2)

- Why is the (nongrav) term is positive?

$$
\begin{gathered}
c_{2}(\Lambda)=\frac{(\text { nongrav })}{}+(\text { grav })>-O\left(M_{\mathrm{pl}}^{-2} M_{s}^{-2}\right) . \\
>0(\text { why } ?)
\end{gathered}
$$

- This is because,

We have (nongrav) $=\lim _{M_{\mathrm{pl}} \rightarrow \infty} c_{2}(\Lambda)$.
In the $M_{\mathrm{pl}} \rightarrow \infty$ limit, a model becomes renormalizable.
A condition $c_{2}(\Lambda)>0$ is satisfied in renormalizable theory.

Remark(2/2)

- More technically, $\mathcal{M}_{\text {nongrav }}=\lim _{M_{\mathrm{pl}} \rightarrow \infty} \mathcal{M}$ satisfies the twice-subtracted dispersion relation. Hence,

$$
\text { (nongrav) }=\int_{\Lambda^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \mathcal{M}(s, 0)}{s^{3}} \sim \int_{\Lambda^{2}}^{\infty} \mathrm{d} s \frac{\sigma_{\mathrm{tot}}(s)}{s^{2}}>0
$$

$\sigma_{\text {tot }}$: total cross section

- Typically, a particle with mass M contributes to $\sigma_{\text {tot }}$ as

$$
\sigma_{\mathrm{tot}}(s) \sim M^{-2}\left(@ s \sim M^{2}\right) .
$$

- Contributions from light particles are important.

Computation of $c_{\text {grav }}$

- $C_{\text {grav }}=$

$+\cdots$
- 1 PI vertices $V^{\mu \nu}\left(k_{1}, k_{3}\right)=$

$\left.V^{\mu v}\left(k_{1}, k_{3}\right)\right|_{k_{1}^{2}=k_{3}^{2}=-m^{2}} \ni R\left(q^{2}\right)\left(k_{1}-k_{3}\right)^{\mu}\left(k_{1}-k_{3}\right)^{\nu}, \quad R_{\text {tree }}\left(q^{2}\right)=1 / 2$.
$\left.\longrightarrow \mathcal{M}(s, t)\right|_{\mathrm{grav}} \sim \frac{4 R^{2}(-t) s u}{M_{\mathrm{pl}}^{2} t} \sim \frac{4 R^{\prime}(0)}{M_{\mathrm{pl}}^{2}} s^{2}$
$\longrightarrow c_{\text {grav }} \simeq \frac{8 R^{\prime}(0)}{M_{\mathrm{pl}}^{2}} \simeq-\frac{1}{M_{\mathrm{pl}}^{2}}\left(\frac{45-8 \pi \sqrt{3}}{1296 \pi^{2}} \frac{g^{2}}{m^{4}}+\frac{10-\pi^{2}}{4608 \pi^{4}} \frac{\lambda^{2}}{m^{2}}\right)<0 . \quad$ Negative!!
- Negative term arises as a result of expanding $R\left(q^{2}\right)$ around $q^{2}=0$.

Sign of $c_{\text {grav }}$ and superluminality

- Consider scalar theory.

- Relevant 1PI vertices:

$$
\begin{aligned}
\mathcal{L}=M_{\mathrm{pl}}^{2} R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\alpha{\underline{R_{\mu \nu}}}\left(\partial^{\mu} \phi\right)\left(\partial^{v} \phi\right) & \alpha<0 \\
& \Leftrightarrow c_{\text {grav }}<0
\end{aligned}
$$

Effective metric for $\phi: \tilde{g}_{\mu \nu}=g_{\mu \nu}-2 \alpha R_{\mu \nu}$
e.g.) FLRW metric with $\dot{H}<0$

Dispersion relation: $\omega^{2} \simeq(1+4 \alpha \dot{H}) k^{2}>k^{2}$ Superluminal relative to the speed of GW!
$c_{\text {grav }}<0 \sim$ Superluminal propagation in b.g. satisfying null-E condition.

