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Introduction



• Effective Field Theory (EFT):

Introduction

Energy scale

UV informationEFT

Integrating out

⇒ Relative entropy characterizes their difference

- Information on UV theory is transferred through interaction b/w heavy and light degrees of freedom   

- EFT is generated by integrating out dynamical degrees of freedom   

Heavy degrees of freedom

Differences between theories with and without interaction characterize UV information

Interaction 
Light degrees of freedom



Relative entropy
• Definition of relative entropy b/w two probability distribution functions  and ρ̃ ρ

S(ρ̃ | |ρ) ≡ Tr [ρ̃ ln ρ̃ − ρ̃ ln ρ]

※ Tr[ρ̃] = Tr[ρ] = 1, ρ̃ = ρ̃†, ρ = ρ†

- relative entropy is non-negative

A proof: 

: a convex functionf(x)

x x̃

f(x)

f(x̃)

f′ (x)

( f(x̃) − f(x))/(x̃ − x)

Definition of convex function: f′ (x)f(x̃) − f(x)
x̃ − x

≤

⇒ Tr[ f(ρ̃) − f(ρ) − (ρ̃ − ρ)f′ (ρ)] ≤ 0

 (convex function)f(x) → x ln x

Relative entropy characterizes difference between two probability distributions 

※ equality holds if and only if  ρ̃ = ρ

S(ρ̃ | |ρ) ≥ 0



S(ρA | |ρB) ≡ Tr [ρA ln ρA − ρA ln ρB] ≥ 0

Our idea
• Relative entropy characterizes difference between two probability distributions

Ex. ρA ρB

S(ρA | |ρB) > 0 S(ρA | |ρB) = 0
What about relative entropy b/w theories with and without interaction?  

※ equality holds if and only if  ρA = ρB

• Relative entropy provides quantitative difference between two things defined 
by probability distribution functions

⇒ We have to define probability distribution for each theory.



Probability distributions of theories

Probability distribution function: P[ϕ, Φ] = e−I[ϕ,Φ]/Z

• Relative entropy between two theories

S(PA | |PB) ≡ ∫ d[ϕ]d[Φ](PA ln PA − PA ln PB) ≥ 0

where  PA = e−IA/ZA, PB = e−IB/ZB

where : Euclidean action, : light fields, : heavy fields I ϕ Φ

Partition function: Z = ∫ d[ϕ]d[Φ]e−I[ϕ,Φ]

• We define probability distributions of theory described by Euclidean action  as follows:I



A :  I0[ϕ, Φ] B :  I0[ϕ, Φ] + II[ϕ, Φ]

• We define  by introducing parameter  I0[ϕ, Φ] + g ⋅ II[ϕ, Φ] g

g
0 1

Definition of two theories No interaction b/w  and  ϕ Φ

We consider relative entropy S(PA | |PB)

Interaction b/w  and  ϕ Φ

※ ( , ) of A is the same as that of BΦ ϕ

• We consider theories described by I0[ϕ, Φ] + II[ϕ, Φ]
※ : heavy fields, : light fieldsΦ ϕ



   PA = e−I0[ϕ,Φ]/Z0  PB = e−(I0[ϕ,Φ]+gII[ϕ,Φ])/ZgS(PA | |PB) = ∫ d[ϕ]d[Φ][PA ln PA − PA ln PB]

Relative entropy between two theories

= W0 − Wg + g (
∂Wg

∂g )
g=0

≥ 0

S(PA | |PB) → tr [PA ln PA − PA ln PB]    PA → e−H0/Z0  PB → e−(H0+gHI)/Zg

Wg = − ln Zg, W0 = − ln Z0= W0 − Wg + g (
∂Wg

∂g )
g=0

≥ 0

even in quantum mechanical system

Wg = − ln Zg, W0 = − ln Z0Effective actions:

 yields constraints on the Euclidean effective actionsS(PA | |PB)



Bottom-up approach



•  Assumptions: 

Bottom-up approach

Energy scale

UV theory

unknown

EFT

known

- EFT is generated through interaction b/w heavy and light fields

heavy lightII[ϕ, Φ] = ∫ (d4x)E 𝒪[Φ]⊗ J[ϕ] =

where we assume  does not involve higher-derivative termsJ[ϕ]

What is the consequence of the non-negativity of relative entropy 
in the bottom-up approach?

※ it would be subdominant



Tree-level UV theory

g g

※ Linear terms of heavy field can be removed by field redefinition

• Ex. Single mass less field theory with shift symmetry 

heavy lightII[ϕ, Φ] = ∫ (d4x)E 𝒪[Φ]⊗ J[ϕ] =
g

Wg[ ϕ̃ ] = ∫ (d4x)E(−
1
2

(1 + a tree
2 )(∂μϕ̃′ ∂μϕ̃′ ) −

ctree
2

M4
(∂μϕ̃′ ∂μϕ̃′ )2) where  : second or higher order of a tree

2 , ctree
2 g

Second or higher order of g

S(P0 | |Pg) = W0[ ϕ̃ ] − Wg[ ϕ̃ ] + g (∂Wg/∂g)g=0
=

ctree
2

M4
(1 + a tree

2 )−2 ∫ (d4x)E(∂μ ϕ̃ ∂μ ϕ̃ )2 ≥ 0 ⇒ ctree
2 ≥ 0

where  ϕ̃ = (1 + a tree
2 )1/2 ⋅ ϕ̃′ , ∂ ϕ̃ = const .

• Relative entropy

Relative entropy constrains Wilson coefficient of dim-8 operator

= ∫ (d4x)E(−
1
2

(∂μ ϕ̃ ∂μ ϕ̃ ) −
ctree

2

M4
(1 + a tree

2 )−2(∂μ ϕ̃ ∂μ ϕ̃ )2)

Effective action: 

※  To remove dim-6 terms



heavy light
g

One-loop level UV theory Second or higher order of gFirst order of g

and  : second or higher order of aloop
2 , cloop

2 gwhere  : first order of aloop
1 g

g g
+

g

∼ g

J[ϕ] J[ϕ] J[ϕ]II[ϕ, Φ] = ∫ (d4x)E 𝒪[Φ]⊗ J[ϕ] =

Effective action: Wg[ ϕ̃ ] = ∫ (d4x)E(−
1
2

(1 + aloop
1 + aloop

2 )(∂μϕ̃′ ∂μϕ̃′ ) −
cloop

2

M4
(∂μϕ̃′ ∂μϕ̃′ )2)

where  ϕ̃ = (1 + aloop
2 )1/2 ⋅ ϕ̃′ , ∂ ϕ̃ = const .

• Example of EFT: Single massless field theory with shift symmetry( ) ϕ → ϕ + const .

= ∫ (d4x)E(−
1
2

(1 + aloop
1 )(∂μ ϕ̃ ∂μ ϕ̃ ) −

cloop
2

M4
(∂μ ϕ̃ ∂μ ϕ̃ )2)

S(P0 | |Pg) = W0[ ϕ̃ ] − Wg[ ϕ̃ ] + g (∂Wg/∂g)g=0
=

cloop
2

M4 ∫ (d4x)E(∂μ ϕ̃ ∂μ ϕ̃ )2 ≥ 0 ⇒ cloop
2 ≥ 0

• Relative entropy
Relative entropy constrains Wilson coefficient of dim-8 operator



Class of theories 

SMEFT SU(N) gauge bosonic operators

Ex.

∫ d4x (−
1
4

Fa
μνFa,μν +

1
Λ4 ∑

i

ci𝒪i)

• Reason why bounds on higher-derivative terms arise: ∫ (d4x)E(−
1
2

(∂μϕ∂μϕ) −
c

M4
(∂μϕ∂μϕ)2)

Einstein-Maxwell theory with higher-derivative terms

∫ d4x −g[ M2
Pl

2
R −

1
4

FμνFμν +
α1

4M4
Pl

(FμνFμν)2 +
α2

4M4
Pl

(FμνF̃μν)2 +
α3

2M2
Pl

FμνFρσRμνρσ]

ϕ → ϕ + δϕ, Aa
μ → Aa

μ + δAa
μ, gμν → gμν + δgμν

Relative entropy yields constraints on the above higher-derivative terms in the 
bottom-up approach.
⇒ The same procedures as a single massless field with shift symmetry work well

⇒ corrections to non-higher derivative term can be removed by field redefinition  



• Non-negativity of relative entropy:

S(P0 | |Pg) = W0 − Wg + g ⋅ (∂Wg/∂g)g=0 = ∫ d4x
1

Λ4 ∑
i

ci𝒪i ≥ 0

Entropy constraints on SMEFT gauge bosonic operators 

※  : constant vectors lμ, kμ

•  :U(1)Y

•  :SU(2)L

•  :SU(3)C

- Classical solution of  :   ∂μFa
μν + gf abcAμ,bFc

μν = 0 Aa
μ = ua

1ϵ1μw1 + ua
2ϵ2μw2 with  , , and f abcua

1ub
2 = 0 ∂μw1 = lμ ∂μw2 = kμ

cB4

1 ≥ 0, cB4

2 ≥ 0, 4cB4

1 cB4

2 ≥ (c̃B4

1 )2,

cW4

1 + cW4

3 ≥ 0, cW4

2 + cW4

4 ≥ 0, 4(cW4

1 + cW4

3 )(cW4

2 + cW4

4 ) ≥ (c̃W4

1 + c̃W4

2 )2,

2cG4

1 + cG4

3 ≥ 0, 3cG4

2 + 2cG4

5 ≥ 0, 3cG4

2 + 3cG4

4 + cG4

6 ≥ 0, 3cG4

4 + 2cG4

6 ≥ 0,

4(3cG4

1 + 3cG4

3 + cG4

5 )(3cG4

2 + 3cG4

4 + cG4

6 ) ≥ (3c̃G4

1 + 3c̃G4

2 + c̃G4

3 )2

4(3cG4

3 + 2cG4

5 )(3cG4

4 + 2cG4

6 ) ≥ (3c̃G4

2 + 2c̃G4

3 )2

[G.N. Remmen, and N.L. Rodd, arXiv:1908.09845]
These bounds are consistent with positivity bounds from unitarity and causality



• Non-negativity of relative entropy:

S(P0 | |Pg) = ∫ (d4x)E g ( α1

4M4
Pl

(FμνFμν)2 +
α2

4M4
Pl

(FμνF̃μν)2 +
α3

2M2
Pl

FμνFρσRμνρσ) ≥ 0

Entropy constraints on Einstein-Maxwell theory

Extremal BH can behave as a state with charge-to-mass ratio larger than one  

• For charged BH background field, thermodynamic relations yield

(ΔMext)Q ∝ − S(P0 | |Pg) ≤ 0 where  is U(1) charge of BH Q

Extremal BH mass shift at fixed charge by higher derivative terms 

⇒Q

Mext / 2MPl

= 1
Q

(Mext + (ΔMext)Q)/ 2MPl

≥ 1charge-to-mass ratio of extremal BH:  

※ This argument is based on a field theory approach and may not apply to theories with stringy particles.

Shift by higher-derivative terms 

⇒ Mild Weak Gravity Conjecture



Summary

• We quantified their differences by relative entropy 

• Differences between theories with and without interaction characterize UV information

• In the bottom-up approach, i.e.,

we found that the non-negativity of relative entropy constrains EFTs, e.g.,

heavy lightII[ϕ, Φ] = ∫ (d4x)E 𝒪[Φ]⊗ J[ϕ] =

where we assume  does not involve higher-derivative termsJ[ϕ]

• Relative entropy provides a new approach to constraining EFTs.

SMEFT SU(N) gauge bosonic operators

Einstein-Maxwell theory with higher-derivative terms 


