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® Nambu-Goldstone (NG) modes can become unstable in the presence of background fields violating the
Lorentz invariance.

| give a general counting rule for “unstable NG modes” of ordinary and higher-form symmetries.

® Chiral plasma instability can be understood by an unstable NG mode for a 1-form symmetry.
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v
N

® Dispersion relation: w =0 for k — 0 .
® Long wave excitation by infinitesimal energy — Dominating infrared (IR) physics
® Characterizing phase of matter: gapless phase
® Ubiquitous in physics: photon, phonon, NG boson due to spontaneous symmetry breaking (SSB)
® w2 = k? in the presence of Lorentz symmetry (i neglect higher order terms)
In the absence of Lorentz symmetry — IR corrections
® 1st order by w: w? = aw + k2 — gapped mode w = a + %

® 1st order by k: w? = Bk + k? — unstable mode
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Unstable mode
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® Dispersion relation w = \/k? + Bk

® For 3 < 0, there is instability w = i/|Bk| — k2 in finite region 0 < |k| < |B|

. . _ L2
(Tachyonic mode ¢ ~ tWtHike o o |BkI—k=t

)
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Unstable mode
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® Dispersion relation w = \/k? + Bk

® For 3 < 0, there is instability w = i/|Bk| — k2 in finite region 0 < |k| < |B|

. . _ L2
(Tachyonic mode ¢ ~ tWtHike o o |BkI—k=t

)

Such an instability arises in realistic systems!
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Example: chiral plasma instability in neutron stars and cosmology

[Carroll et al. '89; Joyce & St

poshnikov '97; Akamatsu & Y: o '13]

. V(o)
©®40

[ Maxwell + © term

1 1
S = -1 /d4mfwf“" + Z/d“x@eﬂ"m’fwfpg

ay: U(1) gauge field; fu, = 0ua, — dyay: field strength; © = ust; pus > 0: constant

® .5 = chiral chemical potential, or © = time dependent axion

® 1st order of k: Oe*VP? f, fpo ~ ,u560ijkai3jak
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Example: chiral plasma instability in neutron stars and cosmology
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poshnikov '97; Akamatsu & Y: o '13]
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©®40

[ Maxwell + © term

1 1
S = -1 /d4mfwf‘“’ + Z/d“x@eﬂ"m’fwfpg

ay: U(1) gauge field; fu, = 0ua, — dyay: field strength; © = ust; pus > 0: constant

® .5 = chiral chemical potential, or © = time dependent axion

® 1st order of k: Oe*VP? f, fpo ~ ,u560ijkai3jak

Let us see the unstable mode explicitly.
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Instability for photon
EOM in momentum space
® For wave vector k = (k,0,0), (ap = 0 gauge)

ay 0 0 0 al

W? = k) ay | =ik |0 0 s as

as 0 —us 0 as
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® Dispersion relation: w? = 4|usk| + k2 due to non-zero eigenvalues +p5 of (iu5e%)

® One unstable mode w = iy/pusk — k2 in IR |k| < ps
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Instability for photon
EOM in momentum space
® For wave vector k = (k,0,0), (ap = 0 gauge)

al 0 0 0 ail
W =k |aa | =ik|0 0 pus||ae

as 0 —us O as
—_—
15 e0idlk,

® Dispersion relation: w? = &|usk| + k2 due to non-zero eigenvalues £pu5 of (iu5e0%)

® One unstable mode w = iy/usk — k2 in IR |k| < ps

f Observation ]

Number of unstable modes = %rank(;%emij)

— — k2
The rest of the rank corresponds to dissipative modes e psk—k=t
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Instability of gapless modes in background fields

In this talk, | consider this class of instability.

Other examples
® Massless axion 4+ photon in background electric field [0oguri & Oshikawa '11]

® (4 + 1) dim. Maxwell-Chern-Simons theory in background electric field [0oguri, Nakamura & Park 09]
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Instability of gapless modes in background fields

In this talk, | consider this class of instability.

] T Iy S

Other examples
® Massless axion 4+ photon in background electric field [0oguri & Oshikawa '11]

® (4 + 1) dim. Maxwell-Chern-Simons theory in background electric field [0oguri, Nakamura & Park 09]

Q: Can we understand the unstable modes universally?
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Hint: Counting rule of gapped modes for w? = aw + k2
[Watanabe & Murayama '12; Hidaka '12]
Assumptions (rough)

® Gapless modes are NG modes

® Dispersion relation: w?

= aw + k2, some of NG modes becomes gapped

Number of gapped modes is determined by symmetry
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Virtue: Dispersion relation can be determined universally without details of models.

Qo broken symmetry generator
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Is it possible to establish a counting rule for unstable modes in a similar way?
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Assumptions (rough)
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Virtue: Dispersion relation can be determined universally without details of models.

Qo broken symmetry generator

Is it possible to establish a counting rule for unstable modes in a similar way?

Is the photon a NG mode?
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Photon is NG mode of 1-form symmetry (caioto et al. 14 Lake 18]
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Higher (p)-form symmetry = symmetry under transf. of p-dim. object

® Maxwell theory has 1-form symmetry by conservation law of electric flux j+¥ = fHV.
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Photon is NG mode of 1-form symmetry (caioto et al. 14 Lake 18]
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Higher (p)-form symmetry = symmetry under transf. of p-dim. object
® Maxwell theory has 1-form symmetry by conservation law of electric flux j+¥ = fHV.
® Charged object = source of electric flux = worldline (1d) of electric particle

® Photon is NG mode of the 1-form symmetry (1-form symmetry is spontaneously broken)
Chiral plasma instability = the instability of NG mode in bg. field ©

This talk: Counting the number of instability by symmetry
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Counting unstable NG modes in chiral plasma instability



Idea: replacing “time” by “space”

Gapped modes w? = aw + k?

® Correction by 1st order of frequency w

8/13



Idea: replacing “time” by “space”

Gapped modes w? = aw + k?
® Correction by 1st order of frequency w

= 1st order time derivative

8/13



Idea: replacing “time” by “space”

Gapped modes w? = aw + k?
® Correction by 1st order of frequency w

= 1st order time derivative
® Counting rule

® Q. = [d3xj°: integral of time component

8/13



Idea: replacing “time” by “space”

Gapped modes w? = aw + k?
® Correction by 1st order of frequency w

= 1st order time derivative
® Counting rule
® Q.= fd?’a:jg: integral of time component

® Equal-time commutator [Qq, Qb]
ta ta
Qq +— Q&——_'
Qat— — Qut——

—— P Y
£ £'a

8/13



Idea: replacing “time” by “space”

Gapped modes w? = aw + k?
® Correction by 1st order of frequency w

= 1st order time derivative
® Counting rule
® Q.= fd?’a:jg: integral of time component

® Equal-time commutator [Qq, Qb]
ta ta
Qq +— Q&——_'
Qat— — Qut——

—— P Y
£ £'a

Unstable modes w? = Bk + k2
® Correction by 1st order of wave vector k

= 1st order spatial derivative

8/13



Idea: replacing “time” by “space”

Gapped modes w? = aw + k?
® Correction by 1st order of frequency w

= 1st order time derivative
® Counting rule
® Q.= fd?’a:jg: integral of time component

® Equal-time commutator [Qq, Qb]
ta ta
Qq +— Q&——_'
Qat— — Qut——

—— P Y
£ £'a

Unstable modes w? = Bk + k2

Correction by 1st order of wave vector k

= 1st order spatial derivative
Counting rule

® (Q.: integral of spatial component jfl

8/13



Idea: replacing “time” by “space”

Gapped modes w? = aw + k?
® Correction by 1st order of frequency w

= 1st order time derivative
® Counting rule
® Q.= fd?’a:jg: integral of time component
® Equal-time commutator [Qq, Q]

ta tA

Qq -

Qet+—
QA1T— — Qut——

—— P Y
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Unstable modes w? = Bk + k2

Correction by 1st order of wave vector k

= 1st order spatial derivative

Counting rule

® (Q.: integral of spatial component jfl

® Commutator along spatial direction

|
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Counting unstable NG mode in chiral plasma instability

) f“ 3
/;4." fn /7"'L
- s = M fdf
xt o
( Counting rule ]

(# of unstable NG modes along z!-dir.) = %rank(eOZij,LL5) = %rank([Q(Sli)7 QS 1)

S'%: worldsheet perpendicular to z!, z*-directions; [A, B]_i: commutator of A, B along x!-direction

Virtue: # of NG modes is determined by symmetry, and independent of details of models.
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Counting unstable NG mode in chiral plasma instability

) f“ 3
/;4." fr_a /7"'L
- s = M fdf
xt o
[ Counting rule ]

(# of unstable NG modes along z!-dir.) = %rank(eOZij,LL5) = %ranl‘:([Q(.S'li)7 QS 1)

S'%: worldsheet perpendicular to z!, z*-directions; [A, B]_i: commutator of A, B along x!-direction

Virtue: # of NG modes is determined by symmetry, and independent of details of models.
The counting rule can be derived using methods of ordinary QFT.

Here, | will consider unstable mode along 21 direction for concreteness.
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Extract €gp1;/45 from symmetry generator

f Method

L/

Use of Schwinger-Dyson eq. (%—S) ~ (%O)

® EOM: % = Ou(fH¥ — Ofrr) =0 — conserved current: jH¥ = fHV — @ frv
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Extract €gp1;/45 from symmetry generator

f Method ]

Use of Schwinger-Dyson eq. (%—S) ~ (‘;—i@)

® EOM: % = Ou(fH¥ — Ofrr) =0 — conserved current: jH¥ = fHV — @ frv

® jli has €01id5: 11~ OLTOOya; ~ 011 sa

6011‘7[14554(1‘) ~ <5J > ~ <ﬁjlz>
da; daj;

® Use of Schwinger-Dyson eq.
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Extract €gp1;/45 from symmetry generator

f Method ]

Use of Schwinger-Dyson eq. (%—S) ~ (‘;—i@)

® EOM: % = 9,(f* — Of") =0 — conserved current: jH¥ = fHY — @frv

1 has €01 5: 11~ OLTOG a; ~ 011 isa

6011]/L554(33) ~ <5.7 > ~ <ﬁjlz>
da; da;

® EOM = conservation law (the same as ordinary NG mode)

® Use of Schwinger-Dyson eq.

M s 6t () ~ (Bug™ i)
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Relation between €15 and symmetry generator
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/7 ‘E /71.
- / = M fd'b
at 2t
( 601ijll,5 = commutator ]

1 s o ([Q(SY), Q(S™)],1)

Integrate €914 1564 (z) ~ (0,549 1 (z))
® Integral of j1: integral surface should be perpendicular to j1% (the same as in ordinary sym. gen. Q = [ d3;°)
® Integral of 9,747 — [Q(S?), Q(SY)],1

(the same as ordinary Ward-Takahashi id. integral of (9, j* O) ~ (6O) gives commutator ([Q, O]) ~ (5O))
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Counting unstable NG mode by symmetry generator

oL 3
oL
‘L -.LL gﬂ 2
= h L5t _
- = M fd’v
at 2t
f Number of unstable NG modes = commutator ]

01ij

1
(# of unstable NG modes along z!-direction) = 5 rank(e” " us)

= % rank(([Q(Sli), Q(Slj)]acl))
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Summary of derivation

-2 st ]
o
‘L '.!.L gl’] 2
e L 21' _
- PO o fd‘b
at 2t

Instability = 1st order correction by k
® Time dependent background field © o ust
Counting rule
® Symmetry generators are temporally extended, spatially localized.

® Commutator is taken along the direction of k.
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Summary

w , 3 12 5
// i * ) *
% : /7-1. NE ® 2
X 4 -
é’- A - 7 = M _gdf
181
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® Chiral plasma instability can be understood by an unstable NG mode for a 1-form symmetry.
® 4 of unstable modes is counted in terms of symmetry
Our paper [2203.02727]
® A general counting rule for unstable NG modes of ordinary and higher-form symmetries is established.
® |nstability of axion in electric field can also be described.
® A new example of an unstable NG mode for an ordinary symmetry is proposed.
Future work

® Fate of instability. Chiral plasma instability decreases by the dynamics of p5 & unstable NG modes.

[Yamamoto & RY, in preparation]
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