# **Axion Fragmentation**



N. Fonseca, E. Morgante, RS, G. Servant, N. Fonseca, E. Morgante, RS, G. Servant, E. Morgante, W. Ratzinger, RS, B.A. Stefanek, C. Eröncel, RS, G. Servant, P. Sørensen,

1911.08472, JHEP 04 (2020) 010 1911.08473, JHEP 05 (2020) 080 2109.13823, JHEP 12 (2021) 037 2206.14259, JCAP 10 (2022) 053

2022. 11. 29 @ KEK-PH 2022

### Axion (-like) particle

#### Axion field : $\phi$

Shift symmetry (NG boson) + Chern-Simons coupling

$$\phi \rightarrow \phi + \delta \phi$$

$$\frac{1}{f}\phi G_{\mu\nu}\widetilde{G^{\mu\nu}}$$



 Shift symmetry breaking by strong dynamics

$$V(\phi) = \Lambda_b^4 \cos \frac{\phi}{f}$$

- Theoretical motivation, interesting phenomenology, ...
  - Strong CP problem, QCD axion
  - Naturalness of electroweak scale, Relaxion
  - Axion monodromy
  - Axion inflation
  - ...

## Axion (-like) particle & cosmology

Dynamics of axion field is interesting

- Axion & ALP dark mattter
- Relaxion : dynamical expanation of electroweak scale
- ...

Solving EOM 
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$
 with some initial condition

### ex) Axion (-like) particle DM scenario

#### Misalignment mechanism

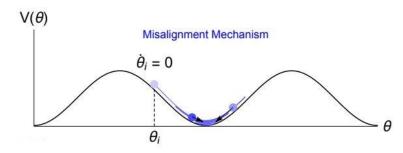
[Preskill, Wise, Wilczek (1983)] [Abbott, Sikivie (1983)] [Dine, Fischler (1983)]

Initial condition

$$\phi = \phi_0 \neq 0 
\dot{\phi} = 0$$

**EOM** 

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\Lambda_b^4(T)}{f}\sin\frac{\phi}{f} = 0$$



[taken from Co, Hall, Harigaya (2019)]

The axion starts to oscillate when  $3H(T) \sim m(T)$ 

$$\rho_{DM} \sim m_a \times \left(\frac{a(T_{osc})}{a_0}\right)^3 \times \frac{\Lambda_b(T_{osc})^4 \theta_i^2}{m_a(T_{osc})}$$

w/  $m_a(T_{osc}) \sim 3H(T_{osc})$ 

mass

Dilution factor

Number density at  $T = T_{osc}$ 

### ex) Axion (-like) particle DM scenario

Misalignment mechanism

[Preskill, Wise, Wilczek (1983) [Abbott, Sikivie (1983)] [Dine, Fischler (1983)]

Initial condition

$$\phi = \phi_0 \neq 0 
\dot{\phi} = 0$$

What happens if  $\dot{\phi} > \Lambda_b^2$ ?

EOM

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\Lambda_b^4(T)}{f}\sin\frac{\phi}{f} = 0$$



[taken from Co, Hall, Harigaya (2019)]

The axion starts to oscillate when  $3H(T) \sim m(T)$ 



$$\rho_{DM} \sim m_a \times \left(\frac{a(T_{osc})}{a_0}\right)^3 \times \frac{\Lambda_b(T_{osc})^4 \theta_i^2}{m_a(T_{osc})}$$

w/  $m_a(T_{osc}) \sim 3H(T_{osc})$ 

mass

Dilution factor

Number density at  $T = T_{osc}$ 

### ex) Axion (-like) particle DM scenario

Dilution factor

Kinetic Misalignment mechanism

[Co, Hall, Harigaya (2019)] [Chang, Cui (2019)] K. Harigaya's talk on Friday morning

Initial condition  $\dot{\phi} > \Lambda_b^2 \qquad \qquad \text{V($\theta$)}$  Kinetic Misalignment Mechanism  $\ddot{\phi} + 3H\dot{\phi} + \frac{\Lambda_b^4(T)}{f}\sin\frac{\phi}{f} = 0$ 

[taken from Co, Hall, Harigaya (2019)]

The axion starts to oscillate when  $\dot{\phi}^2(T) \sim \Lambda_b^4(T)$ 

mass

$$\rho_{DM} \sim m_a \times \left(\frac{a(T_{osc})}{a_0}\right)^3 \times \frac{\Lambda_b(T_{osc})^4}{m_a(T_{osc})} \qquad \text{w/} \quad \dot{\phi}^2(T_{osc}) \sim \Lambda_b^4(T_{osc})$$

Number density at  $T = T_{osc}$ 

Delay of onset of oscillation  $\rightarrow$  larger  $\rho_{DM}$ 

### Axion fluctuation?

#### What people usually do

Solving EOM for spatially homogeneous field:

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

#### However...

Even we start from (almost) homogeneous field configuration, fluctuations can grow later.

### Velocity as U(1) charge

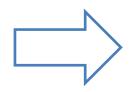
Velocity 
$$\dot{\phi}$$
 is U(1) charge :

$$\rho_{\text{shift}} = f \frac{\partial L}{\partial_0 \phi} = f \dot{\phi}$$

$$\phi \to \phi + f \; \delta$$

Shift transf.

$$V(\phi) = \Lambda_b^4 \cos \frac{\phi}{f} + \cdots$$



U(1) charge will be lost = energy dissipation

#### **Axion fragmentation**

[Fonseca, Morgante, RS, Servant (2019)]

For related earlier works, see
[Green, Kofman, Starobinsky (1998)]
[Flauger, McAllister, Pajer, Westphal, Xu (2009)]
[Jaeckel, Mehta, Witkowski (2016)]
[Arvanitaki, Dimopoulos, Galanis, Lehner, Thompson, Van Tilburg (2019)]

- 1. Introduction
- 2. Perturbative analysis
- 3. Non-perturbative analysis
- 4. Application

Let us investigate the simplest case.

- H = 0 (no cosmic expansion)
- $V(\phi) = \Lambda_h^4 \cos(\phi/f)$

We have only three parameters :  $\phi_0$  : initial velocity f : decay constant  $\Lambda_h^4$  : height of barrie

: height of barrier

EOM of axion:

$$\frac{d^2\phi}{dt^2} - \nabla^2\phi - \frac{\Lambda_b^4}{f}\sin\frac{\phi}{f} = 0$$

We decompose 
$$\phi(\vec{x},t) = \bar{\phi}(t) + \left[ \int \frac{d^3k}{(2\pi)^3} \delta\phi_k(t) e^{ikx} + h.c. \right]$$

#### EOM of axion:

$$\frac{d^2\phi}{dt^2} - \nabla^2\phi - \frac{\Lambda_b^4}{f}\sin\frac{\phi}{f} = 0$$

We decompose 
$$\phi(\vec{x},t) = \bar{\phi}(t) + \left[ \int \frac{d^3k}{(2\pi)^3} \delta\phi_k(t) e^{ikx} + h.c. \right]$$

At the leading order of  $\delta\phi_k$ ,

$$\frac{d^2\bar{\phi}}{dt^2} - \frac{\Lambda_b^4}{f} \sin\frac{\bar{\phi}}{f} = \frac{1}{2} \frac{\Lambda_b^4}{f^3} \sin\frac{\bar{\phi}}{f} \int \frac{d^3x}{V_{vol}} \langle \delta\phi(x) \rangle^2$$
Back reaction

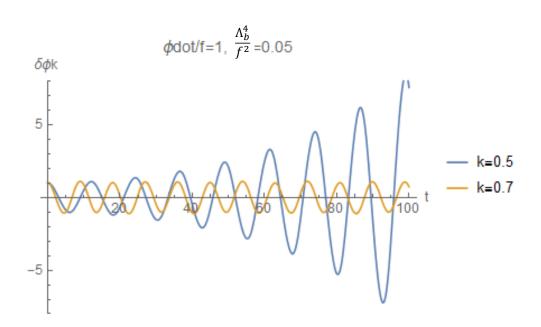
$$\frac{d^2\delta\phi}{dt^2} - \nabla^2\delta\phi - \frac{\Lambda_b^4}{f^2}\cos\frac{\bar{\phi}}{f}\delta\phi = 0$$

We decompose 
$$\phi(\vec{x},t) = \bar{\phi}(t) + \left[ \int \frac{d^3k}{(2\pi)^3} \delta\phi_k(t) e^{ikx} + h.c. \right]$$

At the leading order of  $\delta \phi_k$ ,

$$\frac{d^2\bar{\phi}}{dt^2} - \frac{\Lambda_b^4}{f} \sin\frac{\bar{\phi}}{f} = \frac{1}{2} \frac{\Lambda_b^4}{f^3} \sin\frac{\bar{\phi}}{f} \int \frac{d^3x}{V_{vol}} \langle \delta\phi(x) \rangle^2$$
Back reaction

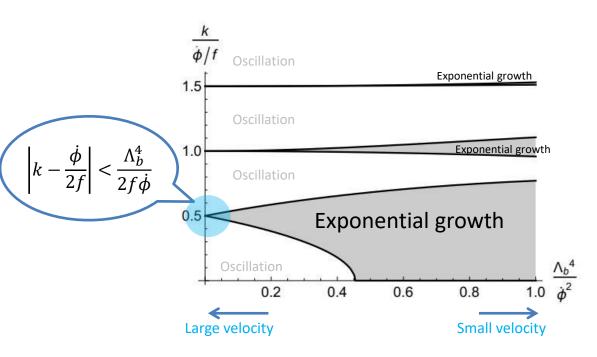
$$\frac{d^2\delta\phi_k}{dt^2} + \left(k^2 - \frac{\Lambda_b^4}{f^2}\cos\frac{\dot{\bar{\phi}}t}{f}\right)\delta\phi_k = 0$$
Mathieu equation





There exist resonant solutions for this. It's like a swing!

$$\frac{d^2\delta\phi_k}{dt^2} + \left(k^2 - \frac{\Lambda_b^4}{f^2}\cos\frac{\dot{\bar{\phi}}t}{f}\right)\delta\phi_k = 0$$
Mathieu equation





There exist resonant solutions for this. It's like a swing!

$$\frac{d^2\delta\phi_k}{dt^2} + \left(k^2 - \frac{\Lambda_b^4}{f^2}\cos\frac{\dot{\bar{\phi}}t}{f}\right)\delta\phi_k = 0$$
Mathieu equation

Growth of fluctuation

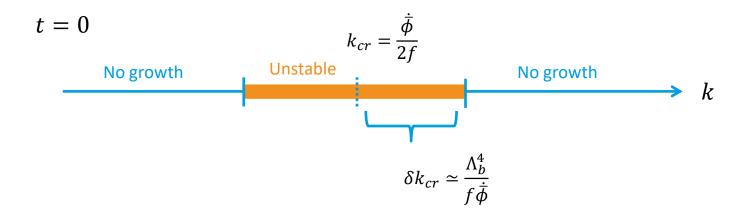


Back reaction to zeromode

As long as  $\dot{\phi}$  is constant,

$$\delta\phi_k \sim \exp\left(\frac{\Lambda_b^4 t}{f\dot{\phi}}\right)$$
 for  $\left|k - \frac{\dot{\phi}}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$ 

$$\left|k - \frac{\phi}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$$



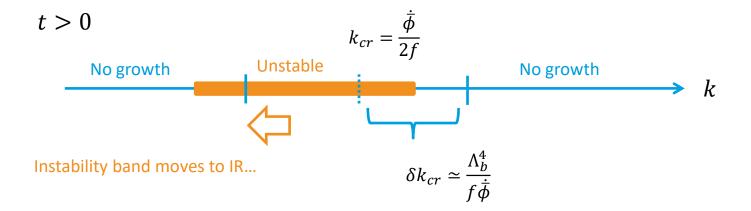
By using dimensional analysis

$$\rho_{fluc}(t) \sim k_{cr}^3 \delta k_{cr} \exp\left(\frac{\Lambda_b^4 t}{f \dot{\phi}}\right)$$

As long as  $\dot{\phi}$  is constant,

$$\delta\phi_k \sim \exp\left(\frac{\Lambda_b^4 t}{f\dot{\phi}}\right) \qquad \text{for} \qquad \left|k - \frac{\dot{\phi}}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$$

$$\left|k - \frac{\dot{\phi}}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$$



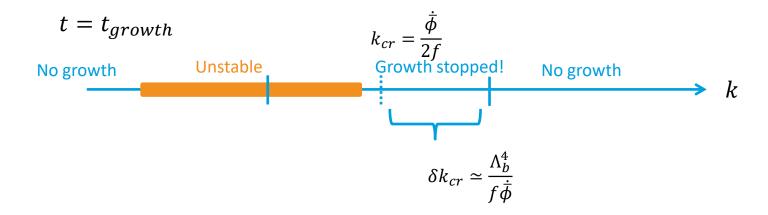
By using dimensional analysis

$$\rho_{fluc}(t) \sim k_{cr}^3 \delta k_{cr} \exp\left(\frac{\Lambda_b^4 t}{f \dot{\bar{\phi}}}\right)$$

As long as  $\dot{\phi}$  is constant,

$$\delta\phi_k \sim \exp\left(\frac{\Lambda_b^4 t}{f\dot{\phi}}\right)$$
 for  $\left|k - \frac{\dot{\phi}}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$ 

$$\left|k - \frac{\phi}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$$



By using dimensional analysis

$$\rho_{fluc}(t) \sim k_{cr}^3 \delta k_{cr} \exp\left(\frac{\Lambda_b^4 t}{f \dot{\bar{\phi}}}\right)$$

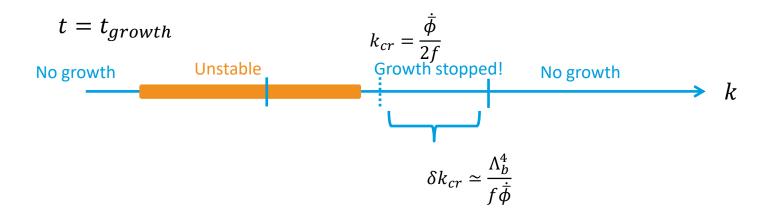
of mode with k=kcr The growth stops when

$$\rho_{fluc}(t_{growth}) \sim \frac{1}{2} \dot{\bar{\phi}}^2 - \frac{1}{2} (\dot{\bar{\phi}} - 2f\delta k_{Cr})^2$$

As long as  $\dot{\phi}$  is constant,

$$\delta\phi_k \sim \exp\left(\frac{\Lambda_b^4 t}{f\dot{\phi}}\right) \qquad \text{for} \qquad \left|k - \frac{\dot{\phi}}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$$

$$\left| k - \frac{\dot{\phi}}{2f} \right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$$



By using dimensional analysis

$$\rho_{fluc}(t) \sim k_{cr}^3 \delta k_{cr} \exp\left(\frac{\Lambda_b^4 t}{f \dot{\phi}}\right)$$

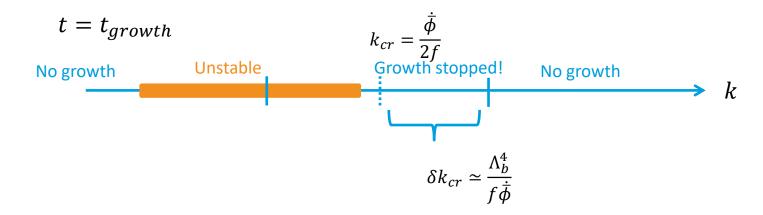
of mode with k=kcr The growth stops when

$$\rho_{fluc}(t_{growth}) \sim \dot{\bar{\phi}}^2 \times \frac{\delta k_{cr}}{k_{cr}}$$

As long as  $\dot{\phi}$  is constant,

$$\delta\phi_k \sim \exp\left(\frac{\Lambda_b^4 t}{f\dot{\phi}}\right)$$
 for  $\left|k - \frac{\dot{\phi}}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$ 

$$\left|k - \frac{\dot{\phi}}{2f}\right| < \frac{\Lambda_b^4}{2f\dot{\phi}}$$



By using dimensional analysis

$$\rho_{fluc}(t) \sim k_{cr}^3 \delta k_{cr} \exp\left(\frac{\Lambda_b^4 t}{f \dot{\bar{\phi}}}\right)$$

of mode with k=kcr

The growth stops when

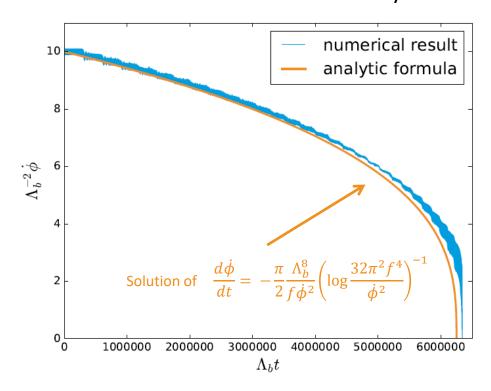
$$\rho_{fluc}(t_{growth}) \sim \dot{\bar{\phi}}^2 \times \frac{\delta k_{cr}}{k_{cr}}$$

$$t_{growth} \sim \frac{f\dot{\bar{\phi}}}{\Lambda_b^4} \log \frac{f^4}{\dot{\bar{\phi}}^2}$$

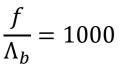
### Result in perturbative analysis

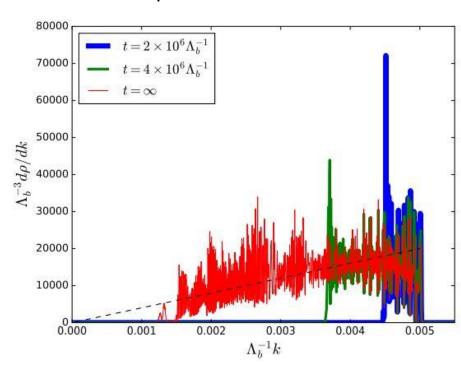
It works!

#### Time evolution of zeromode velocity



#### Fluctuation spectrum





[Fonseca, Morgante, RS, Servant (2019)]

- 1. Introduction
- 2. Perturbative analysis
- 3. Non-perturbative analysis
- 4. Application

## Necessity of non-linear analysis

Perturbative analysis provides intuition. But how reliable?

Inittial kinetic energy :  $\dot{\phi}_0^2/2$ 

Typical wavenumber :  $\dot{\phi}_0/f$ 

Energy conservation :  $(\delta\phi)^2 \times (\dot{\phi}_0/f)^2 \sim \dot{\phi_0}^2$ 



Typical field variation :  $\delta \phi \sim f$ 

**NOT** small!

#### Classical lattice simulation

$$\ddot{\phi} = \nabla^2 \phi + \frac{\Lambda_b^4}{f} \sin \frac{\phi}{f}$$

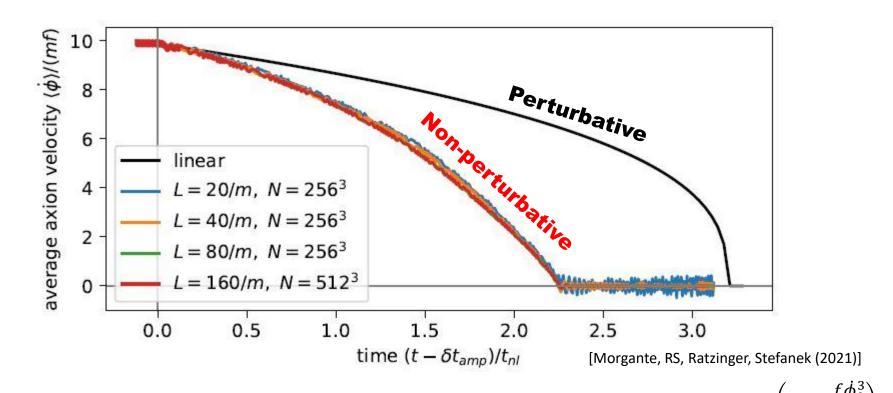
$$\frac{d^2 \phi_{i,j,k}}{dt^2} = \frac{1}{a^2} \left( \phi_{i+1,j,k} - 2\phi_{i,j,k} + \phi_{i-1,j,k} \right)$$

$$+ \frac{1}{a^2} \left( \phi_{i,j+1,k} - 2\phi_{i,j,k} + \phi_{i,j-1,k} \right)$$

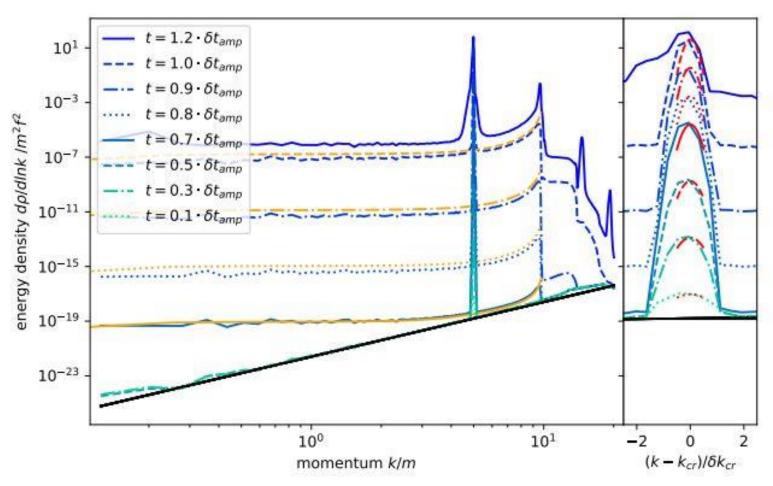
$$+ \frac{1}{a^2} \left( \phi_{i,j,k+1} - 2\phi_{i,j,k} + \phi_{i,j,k-1} \right)$$

$$+ \frac{\Lambda_b^4}{f} \sin \frac{\phi_{i,j,k}}{f}.$$

# Velocity of zeromode

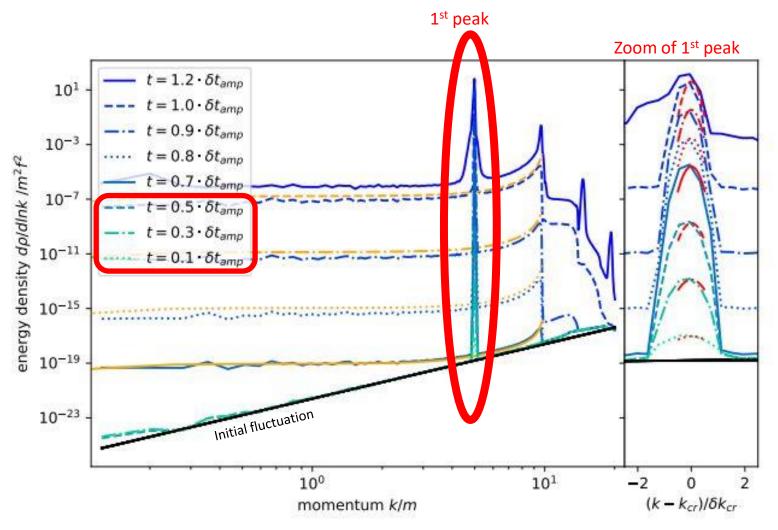


- Confirmed energy dissipation in non-perturbative calculation.
- Dissipation effect is stronger than perturbative analysis.



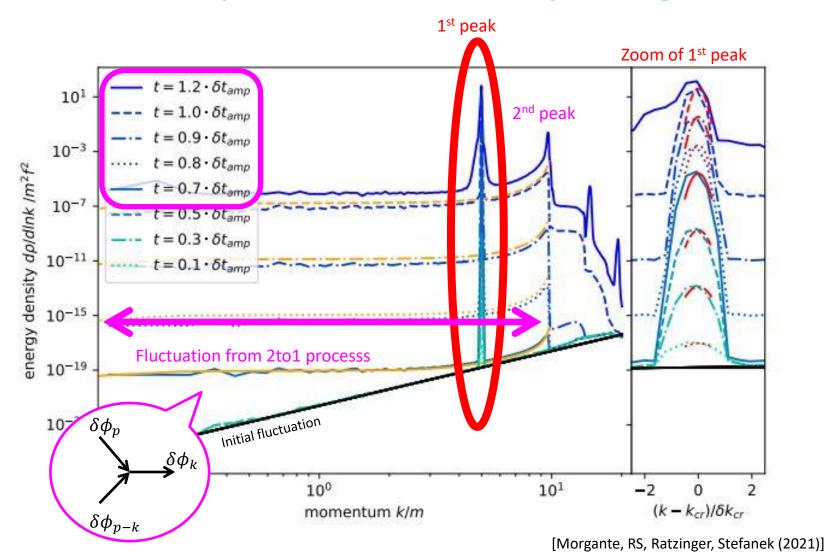
[Morgante, RS, Ratzinger, Stefanek (2021)]

$$\delta t_{amp} \equiv \frac{f\dot{\phi}}{\Lambda_b^4} \log \frac{16f^4}{\dot{\phi}^2}$$



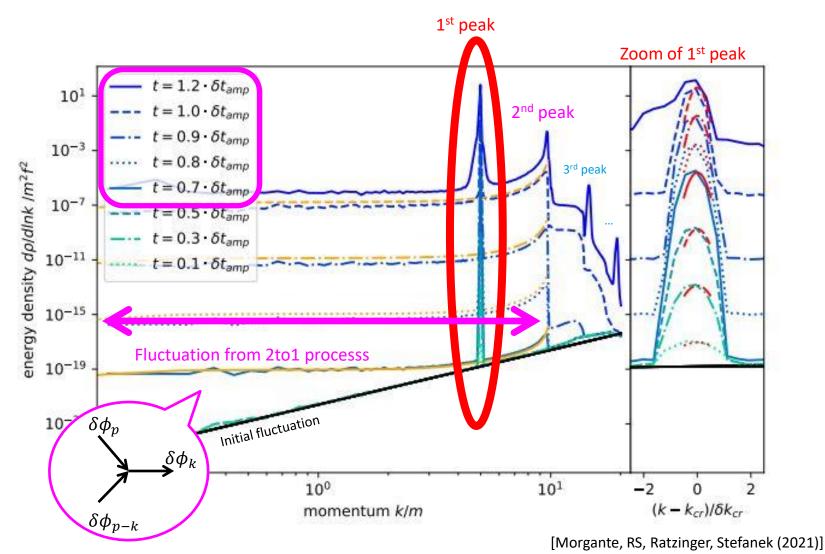
[Morgante, RS, Ratzinger, Stefanek (2021)]

$$\delta t_{amp} \equiv \frac{f\dot{\phi}}{\Lambda_b^4} \log \frac{16f^4}{\dot{\phi}^2}$$



 $\delta t_{amp} \equiv \frac{f\dot{\phi}}{\Lambda_b^4} \log \frac{16f^4}{\dot{\phi}^2}$ 

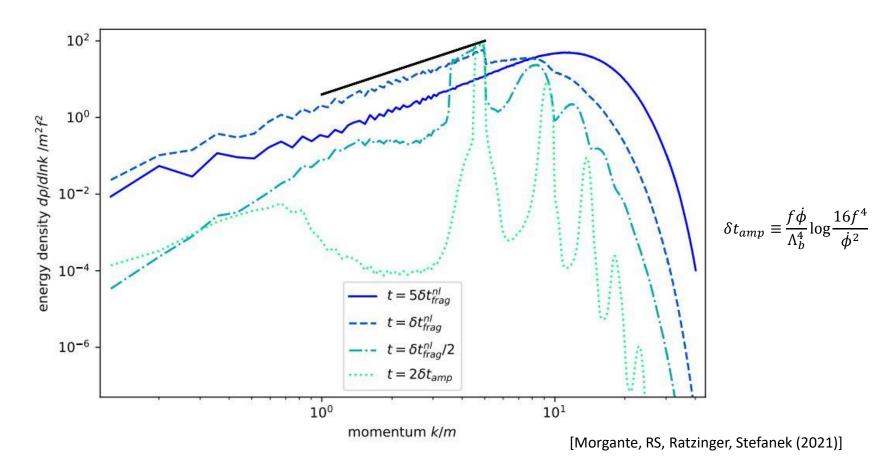
[ 28 / 35 ]



 $\delta t_{amp} \equiv \frac{f\dot{\phi}}{\Lambda_b^4} \log \frac{16f^4}{\dot{\phi}^2}$ 

[ 29 / 35 ]

# Growth of spectrum (late stage)

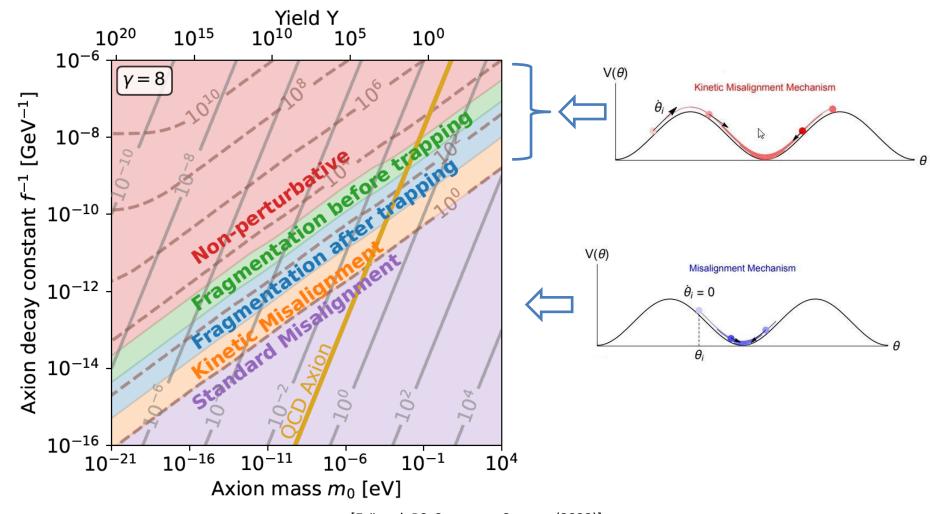


- We can see peak-like structure in the early stage
- The spectrum becomes broad
- Cascading towards UV (early stage of thermalization)

- 1. Introduction
- 2. Perturbative analysis
- 3. Non-Perturbative analysis
- 4. Application

## Implication to ALP dark matter

ALP dark matter: Fragmentation could happen before axion starts to oscillate



[Eröncel, RS, Sørensen, Servant (2022)]

### Possible signals

Axion mini-cluster

See Eröncel-Servant (2207.10111)

Gravitational Wave (tensor perturbation in metric)

$$\nu \sim \frac{k}{a_{emit}} \frac{a_{emit}}{a_0}$$
 (Typically,  $k \sim m$ )

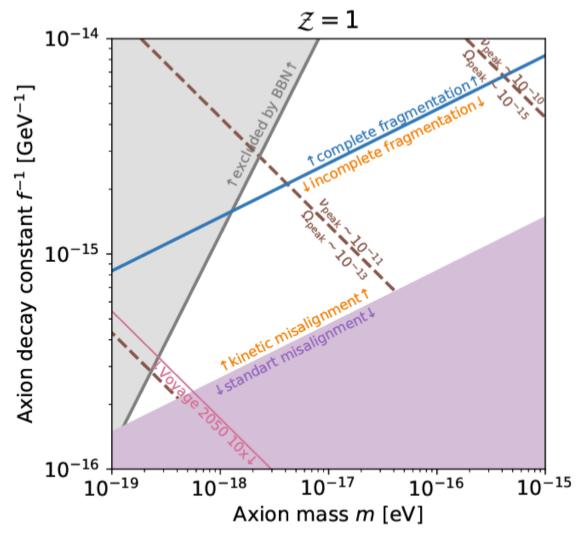
Wave number at emission Redshift

$$\Omega_{GW}^{peak} \sim \frac{64\pi^2}{3M_{pl}^4 H_{emit}^2} \frac{\rho_{\theta,emit}^2}{\left(k_{peak}/a_{emit}\right)^2} \frac{\alpha^2}{\beta}$$
 (Typically,  $\alpha < 1$ ,  $\beta > 1$ )

See [Chatrchyan, Jaeckel (2020)]

c.f.) 
$$\ddot{h} + 3H\dot{h} \sim \frac{1}{M_{pl}^2} \rho_{\phi}, \quad \rho_{GW} \sim M_{pl}^2 \dot{h}^2$$

### Possible signals: gravitational waves



Detailed analysis is tuture work

[Eröncel, RS, Sørensen, Servant (2022)]

### Summary

- Large axion velocity → growth of fluctuation
- Zeromode kinetic energy dissipates into fluctuations
- Generic phenomena w/ periodic potential and large velocity
- Applications
  - ALP dark matter
  - Relaxion scenario (1911.08473, Fonseca-Morgante-Sato-Servant)
     Relaxion fragmentation can be a source of friction to stop relaxion.
  - Any other interesting application?

Backup

### References

Green, Kofman, Starobinsky, hep-ph/9808477

Parametric resonance from large amplitude

Flauger, McAllister, Pajer, Westphal, Xu, 0907.2916

Cosine + linear term, monodromy infl.

Jaeckel, Mehta, Witkowski, 1605.01367

Cosine + quadratic term, linear

Berges, Chatrchyan, Jaeckel, 1903.03116

Cosine + quadratic term, non-perturbative

Arvanitaki, Dimopoulos, Galanis, Lehner, Thompson, Van Tilburg, 1909.11665

Parametric resonance from large amplitude

### Naïve estimation on back reaction

Time scale of growth of single mode:

Energy stored in fluctuations:

$$t_{stop} \sim \frac{f\dot{\bar{\phi}}}{\Lambda_b^4} \log \frac{f^4}{\dot{\bar{\phi}}^2}$$

$$\rho_{fluc}(t_{stop}) \sim \dot{\bar{\phi}}^2 \times \frac{\delta k_{cr}}{k_{cr}},$$



$$\frac{d}{dt}\dot{\phi}^2 \sim -\frac{\rho_{fluc}(t_{stop})}{t_{stop}} \sim -\frac{\Lambda_b^8}{f\dot{\phi}} \left(\log\frac{f^4}{\dot{\phi}^2}\right)^{-1}$$

$$\sim -\frac{\Lambda_b^8}{f\dot{\phi}} \left(\log \frac{f^4}{\dot{\phi}^2}\right)^{-1}$$



$$\frac{d}{dt}\dot{\phi} \sim -\frac{\Lambda_b^8}{f\dot{\phi}^2} \left(\log\frac{f^4}{\dot{\phi}^2}\right)^{-1}$$

c.f.) WKB approx. with 
$$\,\dot{\phi}\gg \Lambda_b^2$$
 give

c.f.) WKB approx. with 
$$\dot{\phi} \gg \Lambda_b^2$$
 gives 
$$\frac{d\dot{\phi}}{dt} = -\frac{\pi}{2} \frac{\Lambda_b^8}{f \dot{\phi}^2} \left( \log \frac{32\pi^2 f^4}{\dot{\phi}^2} \right)^{-1}$$

(see 1911.08472 for details)

Time scale of fragmentation:

$$\Delta t_{frag} \sim f \frac{\dot{\phi}_0^3}{\Lambda_b^8} \log \frac{f^4}{\dot{\phi}_0^2}$$

Field excursion:

$$\Delta \phi_{frag} \sim \dot{\phi_0} \Delta t_{frag} \sim f \frac{\dot{\phi}_0^4}{\Lambda_h^8} \log \frac{f^4}{\dot{\phi}_0^2}$$

## Non-zero slope & Hubble expansion

What happens for non-zero  $\mu^3$  & non-zero H?

• Fragmentation 
$$\ddot{\phi}_{frag} = -\frac{\pi\Lambda_b^8}{2f\dot{\phi}^2} \bigg(\log\frac{32\pi^2f^4}{\dot{\phi}^2}\bigg)^{-1}$$
• Acceleration by slope 
$$\mu^3 = 3H\dot{\phi}$$
• Hubble expansion 
$$3H\dot{\phi}$$

#### Fragmentation works if

• During inflation  $(3H\dot{\phi}\sim\mu^3)$ 

 $3H\dot{\phi} < \sim |\ddot{\phi}_{frag}|$  If not, axion keeps rolling with slow-roll velocity

• Not during inflation ( $3H\dot{\phi}\ll\mu^3$ )

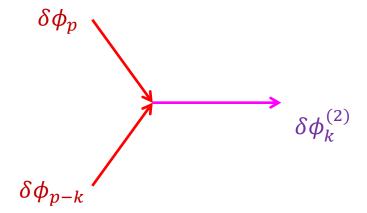
 $\mu^3 < \sim |\ddot{\phi}_{frag}|$  If not, axion is just accelerated by slope

## 2 to 1 process

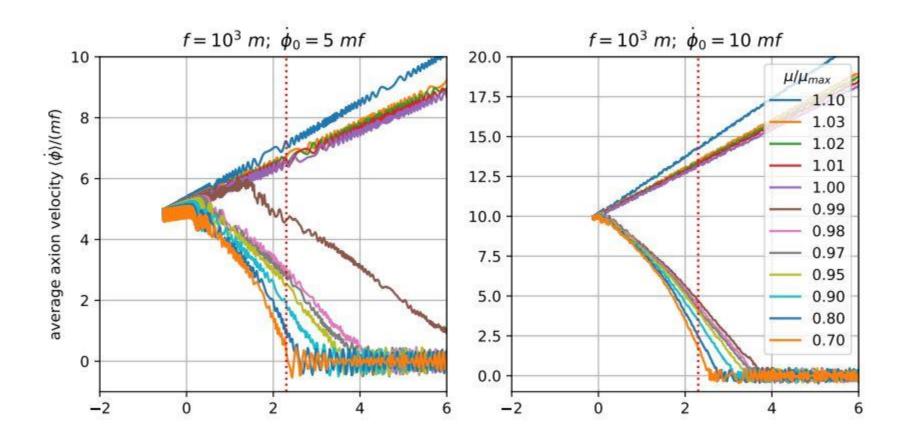
$$\phi(x,t) = \phi(t) + \delta\phi(x,t) + \delta\phi^{(2)}(x,t) + \dots$$

$$\ddot{\phi} - \nabla^2 \phi = V'(\phi) \qquad \qquad \delta \ddot{\phi}^{(2)} + (k^2 + V'') \delta \phi^{(2)} = -\frac{1}{2} V''' \int d^3 p \, \delta \phi_p \delta \phi_{k-p}$$

- $\delta \phi_p$  with  $|p| = \dot{\phi}/2f$  is amplified by resonance
- $\delta \phi$  becomes source term for  $\delta \phi^{(2)}$



## Lattice calc. w/ slope term



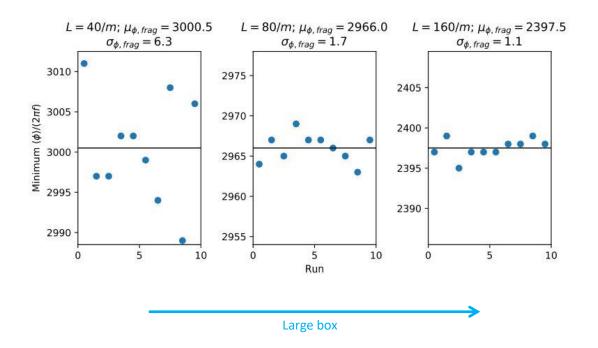
### Domain wall?

Field variance after fragmentation is not so small:

 $\delta \phi \sim f$ 

#### Multiple run with finite size box

- $\delta \phi$  in multiple run =  $\delta \phi$  of causally disconnected area
- Extrapolation to  $V^{1/3} pprox \delta t_{
  m frag}$



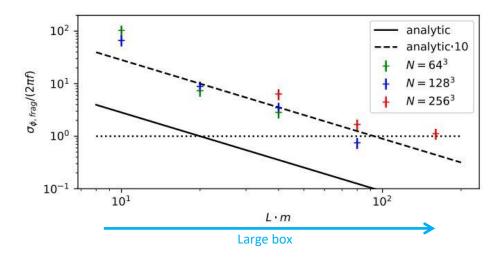
### Domain wall?

Field variance after fragmentation is not so small:

$$\delta \phi \sim f$$

Multiple run with finite size box

- $\delta \phi$  in multiple run =  $\delta \phi$  of causally disconnected area
- Extrapolation to  $V^{1/3} \approx \delta t_{\rm frag}$



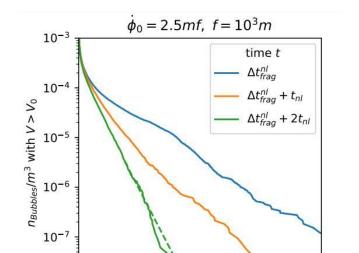
Empirical formula of variance:

$$\frac{\delta\phi}{2\pi f}\sim O(10)\times V^{-1/2}\times \left(\frac{f\dot{\phi}_0}{\Lambda_b^2}\right)^{3/2}$$

Naïve extrapolation to  $V^{1/3} \sim t_{amp}$ :  $\frac{\sigma}{2\pi f} \sim O(10) \times \left(\log \frac{8\pi f^2}{\dot{\phi}_0}\right)^{-\frac{3}{2}} \sim 0.01 - 0.1$  Domain wall formation probability is  $\sim e^{-100} - e^{-10}$ 

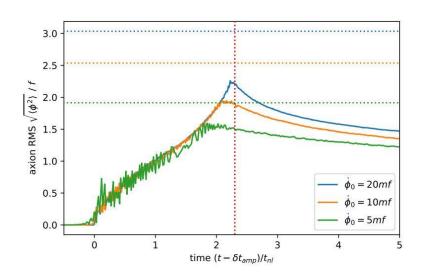
## Energy cascade into UV

Number counting of "bubble"



10-8

Time evolution of variance  $\langle \delta \phi^2 \rangle$ 



• Fluctuation with long wave-length is exponentially suppressed.

2000

The size of variance decreases in time.

1000

 $V_0 \cdot m^3$ 

500

 $\delta t_{amp}^3 = 5.0 \times 10^4 \ m^{-3}$ 

1500

## How to get initial velocity

[taken from slide by P. Sørensen (2021)]

#### Implementations: How to get the kick

Strategy: Radial dynamics:

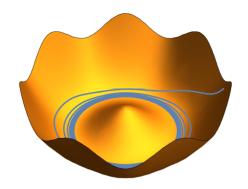
$$P = \frac{S}{\sqrt{2}}e^{i\theta}$$

Afflek-dine-like setup (Afflek and Dine, 1985 and Co et al., 2019), with a nearly-quadratic potential + higher dimensional operators:

$$V = (m_S^2 - c_H H^2)|P|^2 + \frac{Am_s + aH}{n} \frac{P^n}{M^{n-3}} + h.c. + \frac{|P|^{2n-2}}{M^{2n-6}}$$

Large initial radial VEV:

$$S(H) = (HM^{n-3})^{\frac{1}{n-2}} \left(\frac{2^{n-2}}{n-1}\right)^{\frac{1}{2n-4}}$$



Solve EOM for  $\theta$ :

$$\begin{split} n_{PQ} &= S^2 \dot{\theta}_{\rm kick} \\ &= 2^{1-\frac{n}{2}} \frac{A N_{dw} S^n \sin(n\theta/N_{dw})}{m_{s,\rm eff} M^{n-3}}. \end{split}$$

Elliptic orbit

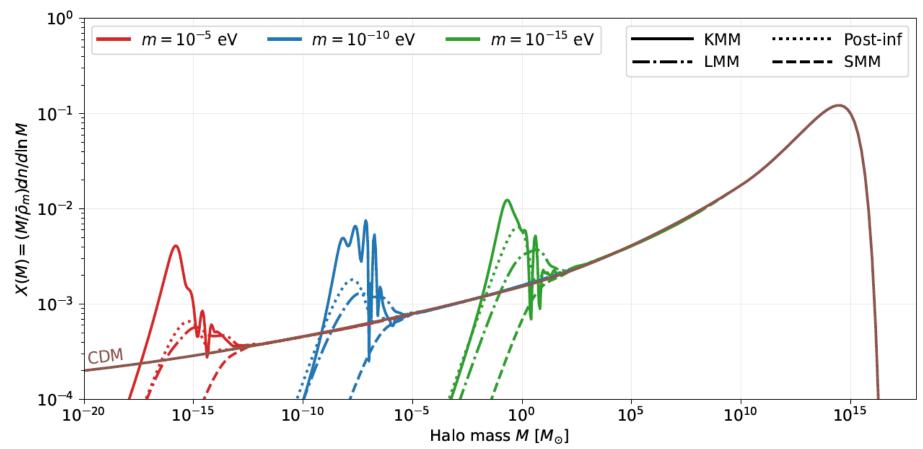
ightarrow radial oscillations must be damped

## Possible signals: ALP mini-cluster

clump of axion DMs

Small  $m \rightarrow \text{Large mini-cluster}$ 

Perturbative analysis + Press-Schechter formalism

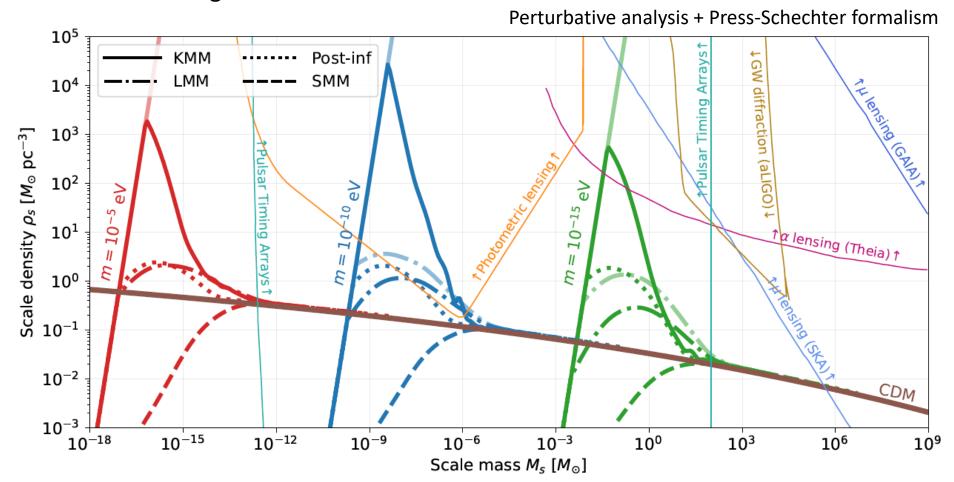


[Eröncel, Servant (2022)]

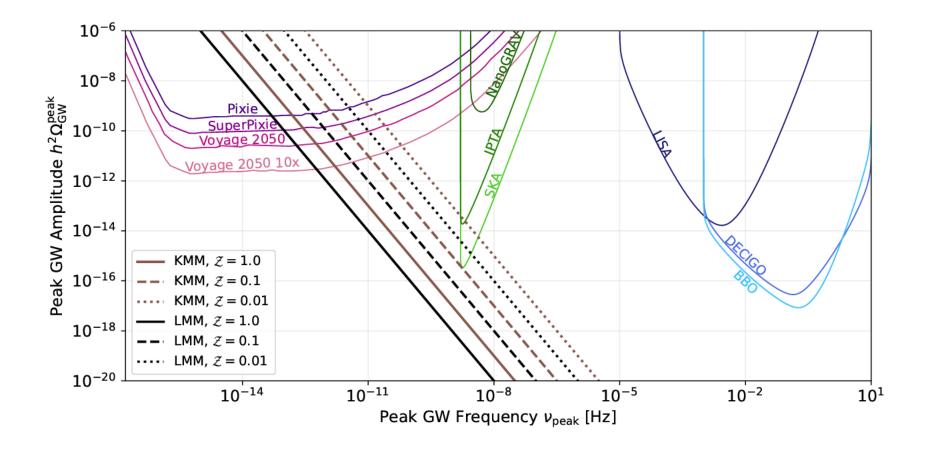
# Possible signals: ALP mini-cluster

clump of axion DMs

Small  $m \rightarrow$  Large mini-cluster



[Eröncel, Servant (2022)]

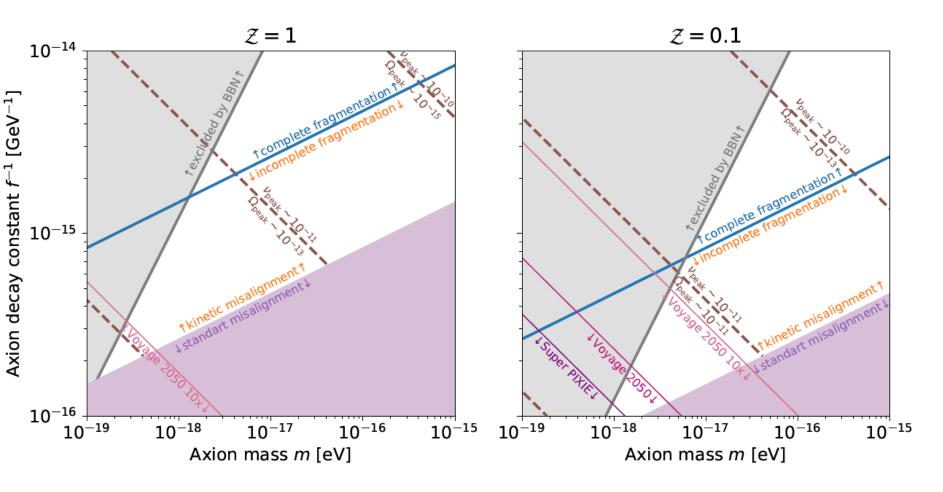


$$\nu_{\text{peak}} \sim 8 \times 10^{-11} \,\text{Hz} \left(\frac{m_*}{m_0}\right)^{2/3} \left(\frac{m_0}{10^{-16} \,\text{eV}}\right)^{1/3} \left(\frac{f}{10^{14} \,\text{GeV}}\right)^{-2/3} \mathcal{Z}^{-1/3}.$$

$$\frac{a_*}{a_0} = \left(\frac{3\pi}{8} \frac{\Omega_{\rm DM}}{\mathcal{Z}} \frac{M_{\rm pl}^2 H_0^2}{m_0 m_* f^2}\right)^{1/3}.$$

$$\Omega_{\rm GW,0}^{\rm peak} \sim 1.5 \times 10^{-15} \left(\frac{m_*}{m_0}\right)^{2/3} \left(\frac{m_0}{10^{-16} \,\text{eV}}\right)^{-2/3} \left(\frac{f}{10^{14} \,\text{GeV}}\right)^{4/3} \mathcal{Z}^{-4/3}.$$

## Possible signals: gravitational waves



Detailed analysis is future work

[Eröncel, RS, Sørensen, Servant (2022)]