Axion Fragmentation

Ryosuke Sato

N. Fonseca, E. Morgante, RS, G. Servant, N. Fonseca, E. Morgante, RS, G. Servant, E. Morgante, W. Ratzinger, RS, B.A. Stefanek, C. Eröncel, RS, G. Servant, P. Sørensen,
1911.08472, JHEP 04 (2020) 010
1911.08473, JHEP 05 (2020) 080 2109.13823, JHEP 12 (2021) 037 2206.14259, JCAP 10 (2022) 053

Axion (-like) particle

Axion field : ϕ

- Shift symmetry (NG boson) + Chern-Simons coupling

$$
\phi \rightarrow \phi+\delta \phi
$$

$$
\frac{1}{f} \phi G_{\mu v} \widetilde{G^{\mu \nu}}
$$

- Shift symmetry breaking by strong dynamics

$$
V(\phi)=\Lambda_{b}^{4} \cos \frac{\phi}{f}
$$

- Theoretical motivation, interesting phenomenology, ...
- Strong CP problem, QCD axion
- Naturalness of electroweak scale, Relaxion
- Axion monodromy
- Axion inflation
- ...

Axion (-like) particle \& cosmology

Dynamics of axion field is interesting

- Axion \& ALP dark mattter
- Relaxion : dynamical expanation of electroweak scale
- ...

Solving EOM $\quad \ddot{\phi}+3 H \dot{\phi}+V^{\prime}(\phi)=0 \quad$ with some initial condition

ex) Axion (-like) particle DM scenario

- Misalignment mechanism
[Preskill, Wise, Wilczek (1983)]
[Abbott, Sikivie (1983)]
[Dine, Fischler (1983)]

$$
\begin{array}{cl}
\text { Initial condition } & \phi=\phi_{0} \neq 0 \\
\dot{\phi}=0 \\
\text { EOM } & \ddot{\phi}+3 H \dot{\phi}+\frac{\Lambda_{b}^{4}(T)}{f} \sin \frac{\phi}{f}=0
\end{array}
$$

The axion starts to oscillate when $3 H(T) \sim m(T)$

$$
\rho_{D M} \sim m_{a} \times\left(\frac{a\left(T_{o s c}\right)}{a_{0}}\right)^{3} \times \frac{\Lambda_{b}\left(T_{o s c}\right)^{4} \theta_{i}^{2}}{m_{a}\left(T_{o s c}\right)}
$$

$$
\mathrm{w} / m_{a}\left(T_{o s c}\right) \sim 3 H\left(T_{o s c}\right)
$$

$$
\text { mass } \quad \text { Dilution factor } \quad \text { Number density at } T=T_{O S C}
$$

ex) Axion (-like) particle DM scenario

Initial condition
\[\begin{gathered} \phi=\phi_{0} \neq 0
\dot{\phi}=0 \end{gathered} \]
What happens if $\dot{\phi}>\Lambda_{b}^{2}$?

ex) Axion (-like) particle DM scenario

- Kinetic Misalignment mechanism
[Co, Hall, Harigaya (2019)] [Chang, Cui (2019)]

K. Harigaya's talk on Friday morning

Initial condition

$$
\begin{aligned}
& \dot{\phi}>\Lambda_{b}^{2} \\
& \ddot{\phi}+3 H \dot{\phi}+\frac{\Lambda_{b}^{4}(T)}{f} \sin \frac{\phi}{f}=0
\end{aligned}
$$

[taken from Co, Hall, Harigaya (2019)]

The axion starts to oscillate when $\dot{\phi}^{2}(T) \sim \Lambda_{b}^{4}(T)$

$$
\rho_{D M} \sim m_{a} \times\left(\frac{a\left(T_{o s c}\right)}{a_{0}}\right)^{3} \times \frac{\Lambda_{b}\left(T_{o s c}\right)^{4}}{m_{a}\left(T_{o s c}\right)}
$$

$$
\mathrm{w} / \quad \dot{\phi}^{2}\left(T_{o s c}\right) \sim \Lambda_{b}^{4}\left(T_{o s c}\right)
$$

$$
\text { mass } \quad \text { Dilution factor } \quad \text { Number density at } T=T_{\text {oSc }}
$$

Delay of onset of oscillation \rightarrow larger $\rho_{D M}$

Axion fluctuation?

What people usually do

Solving EOM for spatially homogeneous field :

$$
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}(\phi)=0
$$

However...
Even we start from (almost) homogeneous field configuration, fluctuations can grow later.

Velocity as U(1) charge

Velocity $\dot{\phi}$ is $U(1)$ charge :

$$
\rho_{\text {shift }}=f \frac{\partial L}{\partial_{0} \phi}=f \dot{\phi}
$$

$$
\phi \rightarrow \phi+f \delta
$$

Shift transf.
Explicit breaking of $U(1)$:
$V(\phi)=\Lambda_{b}^{4} \cos \frac{\phi}{f}+\cdots$

$\mathrm{U}(1)$ charge will be lost $=$ energy dissipation

For related earlier works, see
[Green, Kofman, Starobinsky (1998)]
[Flauger, McAllister, Pajer, Westphal, Xu (2009)]
[Jaeckel, Mehta, Witkowski (2016)]
[Arvanitaki, Dimopoulos, Galanis, Lehner, Thompson, Van Tilburg (2019)]

1. Introduction
 2. Perturbative analysis

Non-perturbative analysis Application

EOM of axion

Let us investigate the simplest case.

- $H=0$ (no cosmic expansion)
- $V(\phi)=\Lambda_{b}^{4} \cos (\phi / f)$

We have only three parameters : $\begin{cases}\dot{\phi}_{0} & \text { : initial velocity } \\ f & \text { : decay constant } \\ \Lambda_{b}^{4} & \text { : height of barrier }\end{cases}$
EOM of axion :

$$
\frac{d^{2} \phi}{d t^{2}}-\nabla^{2} \phi-\frac{\Lambda_{b}^{4}}{f} \sin \frac{\phi}{f}=0
$$

EOM of axion

We decompose $\quad \phi(\vec{x}, t)=\bar{\phi}(t)+\left[\int \frac{d^{3} k}{(2 \pi)^{3}} \delta \phi_{k}(t) e^{i k x}+h . c.\right]$

EOM of axion :

$$
\frac{d^{2} \phi}{d t^{2}}-\nabla^{2} \phi-\frac{\Lambda_{b}^{4}}{f} \sin \frac{\phi}{f}=0
$$

EOM of axion

We decompose $\quad \phi(\vec{x}, t)=\bar{\phi}(t)+\left[\int \frac{d^{3} k}{(2 \pi)^{3}} \delta \phi_{k}(t) e^{i k x}+h . c.\right]$

At the leading order of $\delta \phi_{k}$,

$$
\begin{aligned}
& \frac{d^{2} \bar{\phi}}{d t^{2}}-\frac{\Lambda_{b}^{4}}{f} \sin \frac{\bar{\phi}}{f}=\frac{\frac{1}{2} \frac{\Lambda_{b}^{4}}{f^{3}} \sin \frac{\bar{\phi}}{f} \int \frac{d^{3} x}{V_{v o l}}\langle\delta \phi(x)\rangle^{2}}{\text { Back reaction }} \\
& \frac{d^{2} \delta \phi}{d t^{2}}-\nabla^{2} \delta \phi-\frac{\Lambda_{b}^{4}}{f^{2}} \cos \frac{\bar{\phi}}{f} \delta \phi=0
\end{aligned}
$$

EOM of axion

We decompose $\phi(\vec{x}, t)=\bar{\phi}(t)+\left[\int \frac{d^{3} k}{(2 \pi)^{3}} \delta \phi_{k}(t) e^{i k x}+h . c.\right]$

At the leading order of $\delta \phi_{k}$,

[13 / 35]

EOM of axion

There exist resonant solutions for this. It's like a swing!

$$
\frac{d^{2} \delta \phi_{k}}{d t^{2}}+\left(k^{2}-\frac{\Lambda_{b}^{4}}{f^{2}} \cos \frac{\dot{\bar{\phi}} t}{f}\right) \delta \phi_{k}=0
$$

EOM of axion

There exist resonant solutions for this. It's like a swing!

$$
\frac{d^{2} \delta \phi_{k}}{d t^{2}}+\left(k^{2}-\frac{\Lambda_{b}^{4}}{f^{2}} \cos \frac{\dot{\bar{\phi} t}}{f}\right) \delta \phi_{k}=0
$$

[15 / 35]

Growth of fluctuation

Back reaction to zeromode

[16 / 35]

Naïve estimation on back reaction

As long as $\dot{\phi}$ is constant, $\quad \delta \phi_{k} \sim \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\phi}}\right) \quad$ for $\quad\left|k-\frac{\dot{\phi}}{2 f}\right|<\frac{\Lambda_{b}^{4}}{2 f \dot{\phi}}$

$$
t=0
$$

$$
\delta k_{c r} \simeq \frac{\Lambda_{b}^{4}}{f \dot{\bar{\phi}}}
$$

By using dimensional analysis

$$
\rho_{f l u c}(t) \sim k_{c r}^{3} \delta k_{c r} \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\bar{\phi}}}\right)
$$

Naïve estimation on back reaction

As long as $\dot{\phi}$ is constant, $\quad \delta \phi_{k} \sim \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\phi}}\right) \quad$ for $\quad\left|k-\frac{\dot{\phi}}{2 f}\right|<\frac{\Lambda_{b}^{4}}{2 f \dot{\phi}}$

$$
t>0
$$

Instability band moves to IR...

$$
k_{c r}=\frac{\dot{\bar{\phi}}}{2 f}
$$

$$
\delta k_{c r} \simeq \frac{\Lambda_{b}^{4}}{f \dot{\bar{\phi}}}
$$

By using dimensional analysis

$$
\rho_{f l u c}(t) \sim k_{c r}^{3} \delta k_{c r} \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\bar{\phi}}}\right)
$$

Naïve estimation on back reaction

As long as $\dot{\phi}$ is constant, $\quad \delta \phi_{k} \sim \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\phi}}\right) \quad$ for $\quad\left|k-\frac{\dot{\phi}}{2 f}\right|<\frac{\Lambda_{b}^{4}}{2 f \dot{\phi}}$

$$
\delta k_{c r} \simeq \frac{\Lambda_{b}^{4}}{f \dot{\bar{\phi}}}
$$

By using dimensional analysis

$$
\rho_{f l u c}(t) \sim k_{c r}^{3} \delta k_{c r} \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\bar{\phi}}}\right)
$$

Naïve estimation on back reaction

As long as $\dot{\phi}$ is constant, $\quad \delta \phi_{k} \sim \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\phi}}\right) \quad$ for $\quad\left|k-\frac{\dot{\phi}}{2 f}\right|<\frac{\Lambda_{b}^{4}}{2 f \dot{\phi}}$

By using dimensional analysis
The growth stops when

$$
\rho_{f l u c}(t) \sim k_{c r}^{3} \delta k_{c r} \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\bar{\phi}}}\right)
$$

$$
\rho_{\text {fluc }}\left(t_{\text {growth }}\right) \sim \dot{\bar{\phi}}^{2} \times \frac{\delta k_{c r}}{k_{c r}}
$$

Naïve estimation on back reaction

As long as $\dot{\phi}$ is constant, $\quad \delta \phi_{k} \sim \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\phi}}\right) \quad$ for $\quad\left|k-\frac{\dot{\phi}}{2 f}\right|<\frac{\Lambda_{b}^{4}}{2 f \dot{\phi}}$
No growth

$$
t=t_{\text {growth }}
$$

$$
\begin{gathered}
k_{c r}=\frac{\dot{\bar{\phi}}}{2 f} \\
\text { Growth st }
\end{gathered}
$$

$$
\delta k_{c r} \simeq \frac{\Lambda_{b}^{4}}{f \dot{\bar{\phi}}}
$$

By using dimensional analysis

$$
\begin{array}{r}
\rho_{f l u c}(t) \sim k_{c r}^{3} \delta k_{c r} \exp \left(\frac{\Lambda_{b}^{4} t}{f \dot{\bar{\phi}}}\right) \quad \rho_{\text {fluc }}\left(t_{\text {growth }}\right) \sim \dot{\bar{\phi}}^{2} \times \frac{\delta k_{c r}}{k_{c r}} \\
\square t_{\text {growth }} \sim \frac{f \dot{\bar{\phi}}}{\Lambda_{b}^{4}} \log \frac{f^{4}}{\dot{\bar{\phi}}^{2}}
\end{array}
$$

The growth stops when

Result in perturbative analysis

It works!

Time evolution of zeromode velocity

Fluctuation spectrum

$$
\frac{f}{\Lambda_{b}}=1000
$$

[Fonseca, Morgante, RS, Servant (2019)]

Perturbative analysis

 3. Non-perturbative analysis[$23 / 35$]

Necessity of non-linear analysis

Perturbative analysis provides intuition. But how reliable?

$$
\begin{array}{ll}
\text { Inittial kinetic energy : } & \dot{\phi}_{0}^{2} / 2 \\
\text { Typical wavenumber: } & \dot{\phi}_{0} / f \\
\text { Energy conservation: } & (\delta \phi)^{2} \times\left(\dot{\phi}_{0} / f\right)^{2} \sim \dot{\phi}_{0}{ }^{2}
\end{array}
$$

Typical field variation : $\delta \phi \sim f$
NOT small!

Classical lattice simulation

$$
\begin{aligned}
& \frac{d^{2} \phi_{i, j, k}}{d t^{2}}=\frac{1}{a^{2}}\left(\phi_{i+1, j, k}-2 \phi_{i, j, k}+\phi_{i-1, j, k}\right) \\
& \ddot{\phi}=\nabla^{2} \phi+\frac{\Lambda_{b}^{4}}{f} \sin \frac{\phi}{f} \quad \square \\
& +\frac{1}{a^{2}}\left(\phi_{i, j+1, k}-2 \phi_{i, j, k}+\phi_{i, j-1, k}\right) \\
& +\frac{1}{a^{2}}\left(\phi_{i, j, k+1}-2 \phi_{i, j, k}+\phi_{i, j, k-1}\right) \\
& +\frac{\Lambda_{b}^{4}}{f} \sin \frac{\phi_{i, j, k}}{f} \text {. }
\end{aligned}
$$

Velocity of zeromode

- Confirmed energy dissipation in non-perturbative calculation. $\quad\left(t_{n l}=\frac{f \dot{\phi}_{0}^{3}}{\Lambda_{b}^{8}}\right)$
- Dissipation effect is stronger than perturbative analysis.

Growth of spectrum (early stage)

[Morgante, RS, Ratzinger, Stefanek (2021)]
$\delta t_{a m p} \equiv \frac{f \dot{\phi}}{\Lambda_{b}^{4}} \log \frac{16 f^{4}}{\dot{\phi}^{2}}$
[$26 / 35$]

Growth of spectrum (early stage)

[Morgante, RS, Ratzinger, Stefanek (2021)]
$\delta t_{a m p} \equiv \frac{f \dot{\phi}}{\Lambda_{b}^{4}} \log \frac{16 f^{4}}{\dot{\phi}^{2}}$
[27 / 35]

Growth of spectrum (early stage)

[Morgante, RS, Ratzinger, Stefanek (2021)]

$$
\delta t_{a m p} \equiv \frac{f \dot{\phi}}{\Lambda_{b}^{4}} \log \frac{16 f^{4}}{\dot{\phi}^{2}}
$$

Growth of spectrum (early stage)

[Morgante, RS, Ratzinger, Stefanek (2021)]

$$
\delta t_{a m p} \equiv \frac{f \dot{\phi}}{\Lambda_{b}^{4}} \log \frac{16 f^{4}}{\dot{\phi}^{2}}
$$

[29 / 35]

Growth of spectrum (late stage)

- We can see peak-like structure in the early stage
- The spectrum becomes broad
- Cascading towards UV (early stage of thermalization)

1. Introduction Derturbative analysis Non-Perturbative analysis
 4. Application

[$31 / 35$]

Implication to ALP dark matter

ALP dark matter :
Fragmentation could happen before axion starts to oscillate
Yield Y

[Eröncel, RS, Sørensen, Servant (2022)]
[32 / 35]

Possible signals

- Axion mini-cluster

See Eröncel-Servant (2207.10111)

- Gravitational Wave (tensor perturbation in metric)

$$
\left.\begin{array}{c}
v \sim \frac{k}{a_{\text {emit }}} \frac{a_{\text {emit }}}{a_{0}} \quad \text { (Typically, } k \sim m \text {) } \\
\text { at emission }
\end{array}\right)
$$

(Typically, $\alpha<1, \beta>1$)

See [Chatrchyan, Jaeckel (2020)]

$$
\text { c.f.) } \ddot{h}+3 H \dot{h} \sim \frac{1}{M_{p l}^{2}} \rho_{\phi}, \quad \rho_{G W} \sim M_{p l}^{2} \dot{h}^{2}
$$

[33 / 35]

Possible signals : gravitational waves

Detailed anaıysis is tuture work
[Eröncel, RS, Sørensen, Servant (2022)]
[34 / 35]

Summary

- Large axion velocity \rightarrow growth of fluctuation
- Zeromode kinetic energy dissipates into fluctuations
- Generic phenomena w/ periodic potential and large velocity
- Applications
- ALP dark matter
- Relaxion scenario (1911.08473, Fonseca-Morgante-Sato-Servant)

Relaxion fragmentation can be a source of friction to stop relaxion.

- Any other interesting application?

Backup

References

Green, Kofman, Starobinsky, hep-ph/9808477
Parametric resonance from large amplitude
Flauger, McAllister, Pajer, Westphal, Xu, 0907.2916
Cosine + linear term, monodromy infl.
Jaeckel, Mehta, Witkowski, 1605.01367
Cosine + quadratic term, linear
Berges, Chatrchyan, Jaeckel, 1903.03116
Cosine + quadratic term, non-perturbative
Arvanitaki, Dimopoulos, Galanis, Lehner, Thompson, Van Tilburg, 1909.11665
Parametric resonance from large amplitude

Naïve estimation on back reaction

Time scale of growth of single mode :

$$
t_{\text {stop }} \sim \frac{f \dot{\bar{\phi}}}{\Lambda_{b}^{4}} \log \frac{f^{4}}{\dot{\bar{\phi}}^{2}}
$$

$$
\square \frac{d}{d t} \dot{\phi}^{2} \sim-\frac{\rho_{\text {fluc }}\left(t_{\text {stop }}\right)}{t_{\text {stop }}} \quad \sim-\frac{\Lambda_{b}^{8}}{f \dot{\phi}}\left(\log \frac{f^{4}}{\dot{\phi}^{2}}\right)^{-1}
$$

$$
\frac{d}{d t} \dot{\phi} \sim-\frac{\Lambda_{b}^{8}}{f \dot{\phi}^{2}}\left(\log \frac{f^{4}}{\dot{\phi}^{2}}\right)^{-1}
$$

$$
\rho_{f l u c}\left(t_{s t o p}\right) \sim \dot{\bar{\phi}}^{2} \times \frac{\delta k_{c r}}{k_{c r}}
$$

$$
\text { c.f.) WKB approx. with } \phi \gg \Lambda_{b}^{2} \text { gives } \quad \frac{d \dot{\phi}}{d t}=-\frac{\pi}{2} \frac{\Lambda_{b}^{8}}{f \dot{\phi}^{2}}\left(\log \frac{32 \pi^{2} f^{4}}{\dot{\phi}^{2}}\right)^{-1}
$$

$$
\text { (see } 1911.08472 \text { for details) }
$$

Time scale of fragmentation :

$$
\Delta t_{f r a g} \sim f \frac{\dot{\phi}_{0}^{3}}{\Lambda_{b}^{8}} \log \frac{f^{4}}{\dot{\phi}_{0}^{2}}
$$

Field excursion:

$$
\Delta \phi_{f r a g} \sim \dot{\phi}_{0} \Delta t_{f r a g} \sim f \frac{\dot{\phi}_{0}^{4}}{\Lambda_{b}^{8}} \log \frac{f^{4}}{\dot{\phi}_{0}^{2}}
$$

Non-zero slope \& Hubble expansion

What happens for non-zero $\mu^{3} \&$ non-zero H ?

- Fragmentation
- Acceleration by slope
$\ddot{\phi}_{f r a g}=-\frac{\pi \Lambda_{b}^{8}}{2 f \dot{\phi}^{2}}\left(\log \frac{32 \pi^{2} f^{4}}{\dot{\phi}^{3}}\right)^{-1}$.
- Hubble expansion
$3 H \dot{\phi}$

Fragmentation works if

- During inflation $\left(3 H \dot{\phi} \sim \mu^{3}\right)$

$$
3 H \dot{\phi}<\sim\left|\ddot{\phi}_{f r a g}\right| \quad \text { If not, axion keeps rolling with slow-roll velocity }
$$

- Not during inflation $\left(3 H \dot{\phi} \ll \mu^{3}\right)$

$$
\mu^{3}<\sim\left|\ddot{\phi}_{f r a g}\right| \quad \text { If not, axion is just accelerated by slope }
$$

2 to 1 process

$$
\begin{aligned}
& \phi(x, t)=\phi(t)+\delta \phi(x, t)+\delta \phi^{(2)}(x, t)+\ldots \\
& \left.\ddot{\phi}-\nabla^{2} \phi=V^{\prime}(\phi) \quad \square\right\rangle \delta \ddot{\phi}^{(2)}+\left(k^{2}+V^{\prime \prime}\right) \delta \phi^{(2)}=-\frac{1}{2} V^{\prime \prime \prime} \int d^{3} p \delta \phi_{p} \delta \phi_{k-p}
\end{aligned}
$$

- $\delta \phi_{p}$ with $|p|=\dot{\phi} / 2 f$ is amplified by resonance
- $\delta \phi$ becomes source term for $\delta \phi^{(2)}$

Lattice calc. w/ slope term

Domain wall?

Field variance after fragmentation is not so small :
$\delta \phi \sim f$

Multiple run with finite size box

- $\delta \phi$ in multiple run $=\delta \phi$ of causally disconnected area
- Extrapolation to $V^{1 / 3} \approx \delta t_{\text {frag }}$

Domain wall?

Field variance after fragmentation is not so small :
$\delta \phi \sim f$

Multiple run with finite size box

- $\delta \phi$ in multiple run $=\delta \phi$ of causally disconnected area
- Extrapolation to $V^{1 / 3} \approx \delta t_{\text {frag }}$

Naïve extrapolation to $V^{1 / 3} \sim t_{a m p}: \quad \frac{\sigma}{2 \pi f} \sim O(10) \times\left(\log \frac{8 \pi f^{2}}{\dot{\phi}_{0}}\right)^{-\frac{3}{2}} \sim 0.01-0.1$
Domain wall formation probability is $\sim e^{-100}-e^{-10}$

Energy cascade into UV

Number counting of "bubble"

Time evolution of variance $\left\langle\delta \phi^{2}\right\rangle$

- Fluctuation with long wave-length is exponentially suppressed.
- The size of variance decreases in time.

How to get initial velocity

[taken from slide by P. Sørensen (2021)]

Implementations: How to get the kick

Strategy: Radial dynamics:

$$
P=\frac{S}{\sqrt{2}} e^{i \theta}
$$

Afflek-dine-like setup (Afflek and Dine, 1985 and Co et al., 2019), with a nearly-quadratic potential + higher dimensional operators:

$$
V=\left(m_{S}^{2}-c_{H} H^{2}\right)|P|^{2}+\frac{A m_{s}+a H}{n} \frac{P^{n}}{M^{n-3}}+\text { h.c. }+\frac{|P|^{2 n-2}}{M^{2 n-6}}
$$

Large initial radial VEV:

$$
S(H)=\left(H M^{n-3}\right)^{\frac{1}{n-2}}\left(\frac{2^{n-2}}{n-1}\right)^{\frac{1}{2 n-4}}
$$

Solve EOM for θ :

$$
\begin{aligned}
n_{P Q} & =S^{2} \dot{\theta}_{\text {kick }} \\
& =2^{1-\frac{n}{2}} \frac{A N_{d w} S^{n} \sin \left(n \theta / N_{d w}\right)}{m_{s, \text { eff }} M^{n-3}} .
\end{aligned}
$$

Elliptic orbit
\rightarrow radial oscillations must be damped

Possible signals : ALP mini-cluster clump of axion DMs

Small $m \rightarrow$ Large mini-cluster

Perturbative analysis + Press-Schechter formalism

[Eröncel, Servant (2022)]

Possible signals: ALP mini-cluster clump of axion DMs

Small $m \rightarrow$ Large mini-cluster
Perturbative analysis + Press-Schechter formalism

[Eröncel, Servant (2022)]

$$
\begin{aligned}
\nu_{\text {peak }} & \sim 8 \times 10^{-11} \mathrm{~Hz}\left(\frac{m_{*}}{m_{0}}\right)^{2 / 3}\left(\frac{m_{0}}{10^{-16} \mathrm{eV}}\right)^{1 / 3}\left(\frac{f}{10^{14} \mathrm{GeV}}\right)^{-2 / 3} \mathcal{Z}^{-1 / 3} . \\
\frac{a_{*}}{a_{0}} & =\left(\frac{3 \pi}{8} \frac{\Omega_{\mathrm{DM}}}{\mathcal{Z}} \frac{M_{\mathrm{pl}}^{2} H_{0}^{2}}{m_{0} m_{*} f^{2}}\right)^{1 / 3} .
\end{aligned}
$$

$$
\Omega_{\mathrm{GW}, 0}^{\mathrm{peak}} \sim 1.5 \times 10^{-15}\left(\frac{m_{*}}{m_{0}}\right)^{2 / 3}\left(\frac{m_{0}}{10^{-16} \mathrm{eV}}\right)^{-2 / 3}\left(\frac{f}{10^{14} \mathrm{GeV}}\right)^{4 / 3} \mathcal{Z}^{-4 / 3}
$$

Possible signals : gravitational waves

Detailed analysis is future work

