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= Conclusions

L)



= Geometric-optics approximations for black holes:
= Eikonal correspondence
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Geometric-Optics (Eikonal) Approximations

Ringdown:
QNM

> Time

Field propagation in BH spacetimes

VAV, A = -

Photon propagation in BH spacetimes

k%k, = 0

)



Strain

Geometric-Optics (Eikonal) Approximations

Field propagation in BH spacetimes Photon propagation in BH spacetimes

VeV,A = 0(A/L)~ 0 k%k, = 0




 The potential for eikonal ([ - ) QNMs: V =
* The peak of the potential coincides with the photon

How does the correspondence manifest in BH spacetimes?

= Spacetime symmetry is crucial

= Non-rotating BH:

dr?

2 102
B(r)+r dl)

Static and spherically symmetric ds? = —A(r)dt? +

d2
(dTZ +w? |¥ = ngj approach photon sphere when (I - )
*

A(r)
r2

lZ

sphere
« Photon sphere equation: 0,-[A(7)/T%] = 0




Eikonal ONMs Correspondence

= The eikonal QNMs (I — o) and the photon sphere

-
QS
I ;
~
A \ Photon
sphere
critical curve
w=Ql—i(n+1/2)|A.]
= Re(w) — Q. (orbital frequency of the photon sphere)
= Im(w) — A, (Lyapunov exponent) Cardoso, Miranda, Berti, Witek, Zanchin (2009)

| = y = 1,./Q, (critical exponent) @



Correspondence in Kerr Spacetime

» Separable geodesic equations (Carter constant), and separable wave equations

Wave Quantity Ray Quantity Interpretation

R & Wave frequency is same as energy of null ray
(determined by spherical photon orbit).

" I Azimuthal quantum number corresponds to z angular momentum
Z

(quantized to get standing wave in ¢ direction).

1 9412 Real part of angular eigenvalue related to Carter constant
Im + LZ . . . . .
buanuzed to get standing wave in 0 direction). >

Wave decay rate is proportional to Lyapunov exponent

y = —6&7
4 of rays neighboring the light sphere.
Al 2 Nonzero because @y # 0
o (see Secs. II B 2 and III C 3 for further discussion).

Yang et al. (2012)

Recently extended to Kerr-Newman by Li et al. (2021) @
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Eikonal ONMs and BH Shadows

wr <> Angular frequency on PS <« BSize of shadow image

w; < Lyapunov exponentonPS <« Higher-order ring structures

Jusufi (2020), Cuadros-Melgar et al. (2020)
Jusufi (2020), Yang (2021)

= What if the black hole spacetime has less symmetry?

= Can the eikonal correspondence be tested observationally?




= Identifying the correspondence:
= Deformed Schwarzschild spacetime




Deformed Schwarzschild Spacetime

In the presence of deformations:

* Consider small but general axisymmetric deformations
of Schwarzschild BHs Iy = gﬁf}h + hyy (1, 0)
* Radial and latitudinal sectors of geodesic equations are

NOT separable

* Generic photon orbits r(6) do NOT have constant r

* Inseparable QNM equations if deformations are not

Cano, Fransen, Hertog (2020) .

small

Can be separable if deformations are small

(aé'l'wz)q’lm = Vegs(7, 1, m)Lplm

44

Veff(T', [, m) = Voo + oV

®




Two Kinds of Photon Orbits

= Planar circular photon orbits with a constant radius:
= The peak of V.fr(7) is precisely on these orbits
(m|=1>1)

= Generic photon orbits do not have constant r

= These photon orbits should
= be periodic

= form a class of limit cycles

- We can integrate the orbits along full periods § d1 = § 6 1d6

e



Generic Orbits

<% (grrf“)> = (0, F(r*,0)(r —r™)) definition of limit cycle

=0

 The peak of V.¢(r) coincides with the root of this integrated equation
(jm| <landl > 1)

Chen, Chiang, Tsao (2022)
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Generic Orbits

<% (gmj-)> = (0, F(r*,0)(r —r*)) definition of limit cycle

= 0, I} (,,. P 0(5) Lyapunov exponent is 0(1)

0 averaged radius along one period

 The peak of V¢ () coincides with the averaged radius of these orbits
along one period

Chen, Chiang, Tsao (2022)
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= Testing the correspondence:
= A novel test using black hole quasinormal modes (QNMs) and images
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Eikonal Correspondence Violation

2 approach photon sphere when (I - )

+ r?2dQ0?

ds? = —A(r)dt? + dr
B(r)

= In GR, the potential for eikonal ([ - o) QNMs: I/ = % 12

= The peak of the potential coincides with the photon sphere
= Photon sphere equation: 0,[A(1)/r?] = 0

= This may not be true for modified gravity: v~ a(r) <A (r) l2>
r2

= The peak of the potential may differ from the photon sphere of BHs
= Non-minimal coupling between matter and curvature Chen, Bouhmadi-Lépez, Chen (2019) (2021)  Chen, Chen (2020)

= String-inspired models Cardoso, Gualtieri (2010) Konoplya, Stuchlik (2017) Moura, Rodrigues (2021)

= A novel test of eikonal correspondence based on ringdown and image observations of a

single black hole @




ONM Observables

WR

w
leNM — le I|

If the eikonal correspondence is satisfied.:

1
y M = (1 — 2—1) y+0(1%)

|y = A./(). (critical exponent) |

leNM converges to y from below when [ —» oo

L
Chen et al. under preparation O



Black Hole Shadow

Photon Ring Observables




Photon Ring Observables

1 Wn
Yy =—In
T Wpi1
)/b — lln by, — bpiq
" byt — bpy Wn = bt = byl

* Two ring observables converge to y from
above when n — o The n-th ring

{124
Chen et al. under preparation O




Example: Reissner-Nordstrom Black Holes

Disk Model 1 }E\%

Disk size: 17500 ~100M

)



Example: Reissner-Nordstrom Black Holes

Disk Model 1 }E\%

Disk size: 17500 ~100M
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Example: Reissner-Nordstrom Black Holes

Disk Model 2

_ Yr T Y2 TT ] Disk size: rzy~10M
—0.6F =
0.0 0.2 0.4 0.6 0.8 1.0

g/M ()
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Example: Reissner-Nordstrom Black Holes

Disk Model 2
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Results tnsensitive to emaisston models!
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Disk size: rzy~10M
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Example: Kazakov-Solodukhin Black Holes

Disk Model 1 Disk Model 2

* Robust qualitative results in different metrics




Example: Dynamical Chern-Simons Gravity

S = [ d*xy=g (kR + %ﬁRR*) - g [ d*x\/=g(89)?

CS correction dynamical scalar field

= Parity-violating term from the CS correction

Jackiw, Pi (2003) Alexander, Yunes (2009)

= Motivated from string theory

Campbell, Kaloper, Madden, Olive (1993) Moura, Schiappa (2006)

= Schwarzschild metric still a solution

= Schwarzschild perturbations: Axial mode coupled to scalar modes

Cardoso, Gualtieri (2010) Molina, Pani, Cardoso, Gualtieri (2010) Motohashi, Suyama (2011)(2012) Kimura (2018)




Example: Dynamical Chern-Simons Gravity

S = [ d*xy=g (kR + %ﬁRR*) - § [ d*x\/=g(89)?

CS correction dynamical scalar field

2 Y :axial d
coupled QNM equation: d + w? (qj> _ (Vll V12) (‘P) axlal moade
d?‘*z @ V21 sz @ ® : scalar mode

vy, = (1 _ ZM) (l(l+1) _ 6M) , Vo = (1 _ ﬁ) (l(l+1) (1 N 36M2) N ﬁ)

r r2 r3 r T2 KPBro r3

_ (4 _2M , (1+1)! 6M
Viz = Va1 = (1 r ) Br(l-1)! r>

= Schwarzschild perturbations: Axial mode coupled to scalar modes @

Cardoso, Gualtieri (2010) Molina, Pani, Cardoso, Gualtieri (2010) Motohashi, Suyama (2011)(2012) Kimura (2018)




Example: Dynamical Chern-Simons Gravity

a
S =[d*xy=g (KR +ZI9RR*

2

V11 _ (1 . ZM) (l(l+1) . 6M) , sz _ (

r T2 r3

: d Y V4
coupled QNM equation: 2 ( ) — ( 11
(d?"*z T ) ® V21

| _2M

) - §f d* /=g (99)?

CS correction dynamical scalar field

WP : axial mode

® : scalar mode

36M2) ZM)
KPBro r3

break eikonal correspondence

2M (1+1)! 6M
Viz = Va1 = (1-27)
12 21 r Br(l-1)! r>
= Schwarzschild perturbations: Axial mode coupled to scalar modes @
Cardoso, Gualtieri (2010) Molina, Pani, Cardoso, Gualtieri (2010) Motohashi, Suyama (2011)(2012) Kimura (2018)




Example: Dynamical Chern-Simons Gravity

=GR limit
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+: two branches of modes 1/(M 4:8)




Example: Dynamical Chern-Simons Gravity

== GR limit
1.0
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+: two branches of modes 1/(M 4 B)




Example: Dynamical Chern-Simons Gravity

== GR limit
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= Conclusions
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Conclusions I

= Geometric-optics approximation adopted in BH spacetime
= Correspondence between eikonal QNMs and BH images

= [dentifying the correspondence
= Non-rotating BHs
= Kerr BHs

= Deformed BHs
= Eikonal correspondence through the definition of averaged radius along full

closed photon orbits
= Future:
= Non-axisymmetric deformations
= Deformed Kerr

=)



Conclusions II

= Geometric-optics approximation adopted in BH spacetime
= Correspondence between eikonal QNMs and BH images

= Testing the correspondence
= QNM observables and photon ring observables

= They converge to critical exponent y from opposite directions
= Smoking gun of eikonal correspondence violation, place constraints... etc

= Future:
= Rotating cases

= General inclinations and emission models

©



Conclusions III

Thank you for your attention!



Deformed Schwarzschild Spacetime

Gtt = — (1 — %> (1+ €Aj(r)cos’ ) ,

r * A general axisymmetric

deformation which excludes

oM\ ™ . _
grr =1 — — (1 + €B;(r) cos’ 9) : frame-dragging effects
r

gog = 1° (1+ eCy(r) cos’ 0) ,
gpopo =1 8in° 0 (14 €D;(r) cos’ 6) ,
gir = €a;(r) cos’ 0, g9 = €bj(r)cos’ =

gr9 = €c;(r) cos’ 0 gr, = €d;(r) cos’ 0,

go, = €ej(r)cos’ 0.

* Small deformation: |e| K 1
{
Chen, Chiang, Tsao (2022) @



