Foundation of Collider (1)

Circular Collider Linear Collider Energy Recovery Collider Gamma-Gamma Collider Muon Collider Plasma Collider

Kaoru Yokoya, KEK 4th International School on Beam Dynamics and Accelerator Technology (ISBA)

Nov.23.2022,

Limitation of Target Experiments

- By using synchrotrons/linacs we can accelerate particles (proton/electron, etc) up to some tens of GeV, even some 100's of GeV
- However, the center-of-mass energy of a 1000GeV proton and a proton at rest is only some 40GeV (next page)

 $\sqrt{2Mc^2E} = \sqrt{2 \times 1000 \times 0.938} = 43 \text{ GeV}$

- High energy physics demands higher and higher energies
- ≻How can we reach such energies?

Collider

➤Consider a collision of two beams

 \checkmark Either scheme is equivalent if the collision energy is the same

- ✓ Energy of the projectile beam is lower in the right-hand scheme
- ✓ When the particle energy is so high ($E > mc^2$), the right-hand-side scheme is by far better

$$E_{CM} \approx \sqrt{2mE}$$

target experiment

$$E_{CM} = 2E$$

colliding beam

note: here mc^2 is simplified to m

Derivation:

ation:
$$\sqrt{s} = \sqrt{(p_1 + p_2)^2} = \sqrt{p_1^2 + p_2^2 + 2p_1p_2} = \sqrt{2m^2 + 2(E_1E_2 - p_1 \cdot p_2)}$$

$$= \begin{cases} \sqrt{2mE} & (E_1 = E, \ E_2 = m, \ p_2 = 0, \ m \ll E) \\ 2E & (E_1 = E_2 = E, \ p_2 = -p_1, \ m \ll E) \end{cases}$$

 For example, a collision of two 0.5GeV electrons is equivalent to collision of 1TeV electron with an electron at rest

How to make particles collide?

- Beams of same energy and opposite charge
- ≻ Can use a single ring
- You need (electro-static) separators to avoid unnecessary collisions

 Much more freedom by using two rings

..... SppS, Tevatron 2022/11/23 ISBA22 Yokoya

PEPII, KEKB, LHC,

First Electron-Positron Collider: AdA

 First beam in Italy in 1961
 Moved to Orsay (France) and the first collision in 1964
 Orbit radius 65cm, collision energy 0.5GeV

Now exhibited in a garden in Frascati, Italy

The second : Adone

 ➤The first beam in 1967
 ➤Circumference 105m
 ➤Collision energy < 3GeV (Did not reach J/ψ at 3.1GeV)

≻Luminosity 3x10²⁹/cm²/s

Many Colliders Built Since Then

- ≻e+e-
- ≻pp
- ≻ppbar
- ≻ions
- ≻ep

History of Proton/Antiproton Colliders

History of Electron-Positron Colliders

Energy vs. Ring Radius

Difficulty of Colliders

≻Number of events per second

- ✓ Fixed target
 - $F \times n \times d \times \sigma$
 - F: particle flux (number of particles per second)
 - n: density of target (atoms / m³), not the density of projectile
 - *d*: target thickness
 - σ : event cross-section

✓ Collider

$$L \times \sigma, \qquad L = fcol \times \frac{N^2}{S} = \frac{FN}{S}$$

- L: Luminosity
- f_{col} : bunch collision frequency $(F=f_{col}N)$
- N: number of particles per bunch
- S: transverse cross-section of the bunch

Essential difference: $n \times d \rightarrow N / S$ i.e., target density vs. beam density

Need to pack many particles in a small area (firstly, the transverse are)

ABC of Circular Collider Dynamics

Beam dynamics in a circular collider is basically similar to that of storage rings except for the conditions coming from the collision point

≻Luminosity

$$\mathcal{L} = \frac{f_{col} N^2}{4\pi\sigma_x \sigma_y}, \quad \sigma_x^* = \sqrt{\epsilon_x \beta_x^*}, \quad \sigma_y^* = \sqrt{\epsilon_y \beta_y^*}$$

The asterisk * indicates a quantity at the exact collision point

≻Hour-glass Effect

$$\beta_y^* > \approx \sigma_z$$

Beam-beam tune-shift

- The beam is focused (assume oppositely charged beams like e+e-) by the on-coming bunch
- This causes a shift of betatron frequency as well as its spread
- Their magnitude can be characterized by the parameter ξ_x, ξ_y . In the simple case of head-on collision of equal size Gaussian bunches

$$\xi_{x(y)} = \frac{r_e}{2\pi} \frac{N\beta_{x(y)}^*}{\gamma} \frac{1}{\sigma_{x(y)}^*(\sigma_x^* + \sigma_y^*)}$$

- There has been a limit of $\xi_{x,y}$ empirically to be around 0.06, but these days we can predict it by computer simulations
- It is larger when the radiation damping is strong (so, it is small for proton collider)

For e+e- collider it is often assumed $\xi_{x,y} \sim 0.1$ these days. ^{2022/11/23 ISBA22} Yokoya

Era of Huge Circular Colliders: Tevatron

- ≻Fermi National Lab
- ➢ Proton antiproton
- Circumference 6.3km
- ≻1TeV
- ≻ Completed in 1983
- Superconducting magnet 4.2Tesla
- ≻1995 Top Quark
- ≻2009 shutdown

Tevatron behind and Main Injector front

Era of Huge Circular Colliders: LEP

≻LEP (Large Electron-Positron Collider) ✓CERN

- ✓Construction started in 1983
- ✓Operation started in 1989
- ✓Circumference 27km
- ✓ Ultimate beam energy about 100GeV
 ✓ Closed in 2000
- LEP revealed Generation of elementary particles =3
- $n = 2.9841 \pm 0.0083$

SPS: Super Proton Synchrotron

- ► Large proton synchrotron at CERN
- ≻Operation started in 1976
- ≻Achieved 500GeV in 1978
- Then, converted to the first proton-antiproton collider

Stochastic Cooling

➤Is a collider of proton and antiproton possible?

- ≻Antiproton does not naturally exist
- ➤Must be created by accelerator
- Anti-protons can be produced by accelerators >> GeV, but the anti-proton beam is too big (low density)
- "Cooling" is needed for using it in colliders
- ➢Cooling method (stochastic cooling) invented in 1968 by Simon van der Meer
- ≻At CERN
 - ✓ Antiproton beam was cooled and accumulated in AA (Antiproton Accumulator) and transferred to S
 - \checkmark SPS \rightarrow Spp^{bar} S
 - ✓ The first p p^{bar} collision in 1981
 - ✓ Discovery of W⁺⁻, Z⁰ in 1983

Concept of Stochastic Cooling

➢Repeat the following process

- 1. Measure the average beam position of the slices
- 2. Kick each slice so that the center-of-mass comes to zero
- 3. Shuffle the particles (actually, synchrotron oscillation)
- ➢Average position approaches zero
- ≻Speed proportional to 1/N
 - ✓ N: number of particles in a slice
 - ✓ No cooling if N=infinite

Higgs Particle

- ➢ Nambu-Goldstone Model
- ≻Higgs mechanism
 - ✓ Application of Nambu-Goldstone theory
 - \checkmark Start with zero-mass particles with symmetry
 - ✓ Spontaneous symmetry breaking due to Higgs potential
 - \checkmark All particles coupled to Higgs acquire mass
 - \checkmark Applied to Weinberg-Salam theory
- Higgs particle: the only particle that had not been discovered in the Standard Model

$$V(\phi) = -\mu^{2}\phi^{2} + \lambda\phi^{4}$$

$$\langle \phi \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$$

$$M_{H} = 2\lambda v^{2}$$

$$W_{H} = 0$$

Apparent Mass { otential

≻Announced on Jul.4, 2012

Discovery of "Higgs"

≻~125GeV

Huge Colliders Era (continued)

≻LHC

- ➢Recycle of LEP tunnel
- ►14TeV proton-proton
- Discovered Higgs particle in 2012

http://athome.web.cern.ch/athome/LHC/lhc.html

LHC is not the End

- LHC discovered Higgs
 LHC is a proton collider
 - Protons are easier to accelerate to high energies
 - ✓ But the collision is complex due to the complexity of proton
- ➤On the other hand, e+ecollider is:
 - ✓ Particle structure is simple
 - ✓ Better for probing particle properties
 - ✓ e+e- colliders are useful for precision measurement

Limitation of Circular Accelerator

High energy electron (positron) in a circular orbit emits photons (synchrotron radiation) in forward direction and loses energy

- Energy loss in one second is proportional to E^4 / ρ^2
- This is useful for some purposes
 - Use synchrotron light for material physics
- But is a big obstacle for getting high energy electron

Electron-Positron Linear Collider

>To go beyond $E_{CM} = 209 GeV$, linear collider is the natural choice

➢ Note: Linear Collider not needed for proton

SLC: The First Linear Collider

-- 1993 --

1992

➤Single linac

- ✓ One revolution was possible if up to 46GeV
- ➤Completed in 1987 at SLAC
- ➢First Z⁰ event in May 1989
- ► Competition with LEP 2000

Zs per week

- ➢Polarized electron beam (~80%)
- ≻Finished in 1998
- ➢luminosity 3x10³⁰ /cm²/s (design 6x10³⁰)

--1994-----1995

1996

---19

arc

ntegrated Zs

Why LC was not built till 1987 ?

Difference from Ring collider : single pass
 Pass accelerating structure only once
 Beam is thrown away after one collision

► 2 Issues come from this nature of LC

- ✓ High gradient acceleration
- Total length is decided by the accelerating gradient
 ✓ Fine beam
 - Low collision rate
 - Beam must be focused to a tiny spot at the collision point

Luminosity

 \triangleright Number of events in unit time = $\mathcal{L} \times \sigma$ area O $\checkmark \sigma$ comes from physics \checkmark *\mathcal{L}* accelerator parameter >Luminosity $\mathcal{L} = \frac{f_{col}N^2}{\text{beam crosssection}}$ >N: number of particles per bunch \checkmark Linear: number of bunches x pulse repetition frequency ✓ LC loses factor 100-10000

To compensate for this difference, LC must squeeze the beam to a tiny spot at the interaction point (IP)

Development of LC Technology

Serious R&D started in mid 1980's

- ✓US, Germany, Soviet Union, CERN, Japan
- ✓Many machine names were born NLC, TESLA, VLEPP, CLIC, JLC

➤Acceleration method

- ✓New advanced schemes proposed in early stages
 - Laser grating, inverse FEL, dielectric accelerator, plasma
- Settled to the conventional microwave method but with improved technologies
- ✓SCRF, Xband NC, C-band NC, Xband single bunch, two beam
- ✓R&D's unified to SCRF for the next (after SLC) generation LC in 2004

Advantages of SCRF

≻Low loss

- ✓ The Ohmic energy loss per unit time proportional to $1/Q_0$ ✓ $Q_0 \sim 10^{10}$ (SC), 10^4 (NC)
- ✓ $Q_0 \sim 10^{10}$ (SC), 10^{4} (✓ But, keep in mind
 - Pulse length ~ ms (SC), ~μs (NC)
 - To remove 1W of heat, SC required 1kW AC power
 - So, the difference between SC and LC is small (see the next page)

≻Long pulse

- ✓ Easier intra-pulse feedback
- ✓ Detector deadtime

➢ Disadvantages of SC

- ✓ Lower accelerating gradient
 - ~30 MV/m (ILC), ~100 MV/m (CLIC)
- ✓ Large refrigeration system

Crv 3

Sectore and

Vocuum wissel

He Feed

70K shiel

SC cavity

NC vs. SC --- Power Efficifiency

		ILC 500GeV	CLIC 3TeV
Loaded gradient	MV/m	31.5	100
Beam power/beam	MW	5.2	14
Total power consumption	MW	163	582
Beam power/total AC power	%	6.4	4.8
Main linac power efficiency*)	%	12	6

>*) = beam power gain / AC power for main linac

- Including cryogenics (ILC), drive linac and drive beam manipulation (CLIC), linac magnets,
- Not including AC high power line

History of Gradient of SCRF Cavities

ILC

- >e+e- linear collider using superconducting acceleration technology
- Start with E_{CM}=250GeV, to be later upgraded to 500GeV/1TeV
 - ✓ Site length ~20km (~30km for 500GeV, ~50km for 1TeV)
- ≻Average accelerating gradient 31.5MV/m
 - $\checkmark Site length for E_{CM}{=}500 GeV is {\sim}30 km$
 - ✓Now under R&D for higher gradient
 - Even to 2-3 TeV?
- ➤I will not describe it in detail
 - \checkmark You will hear many times in this school
 - ✓In particular, Kuriki san's lecture

ILC Layout

not to scale www.form-one.de