Status of Lepton Flavour Universality Violation in $b \rightarrow sll$ data

Bernat Capdevila Universitat Autònoma Barcelona & University of Cambridge, DAMTP

The $b \to s\ell\ell$ anomalies

$b \to s \, \mu^+ \mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions^{*} by $2-3\sigma$:

- Angular observables in $B^{(0,+)} \to K^{*(0,+)} \mu^+ \mu^-$ LHCb, arXiv:2003.04831, arXiv:2012.13241
- ▶ Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731, arXiv:2105.14007

*: based on hadronic assumptions on which there is no theory consensus yet

LFU violation in $b \to s \,\ell^+ \ell^-$ decays (up to Dec. 2022)

Measurements of lepton flavour universality (LFU) ratios $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$, $R_{K}^{[1.6]}$ show deviations from SM by 2.3, 2.5, and 3.1σ

LHCb, arXiv:1705.05802, arXiv:2103.11769 Belle, arXiv:1904.02440, arXiv:1908.01848

KM50, 10 Feb. 2023

LFU violation in $b \to s \, \ell^+ \ell^-$ decays

New LHCb measurement of the LFU ratios $R_{K}^{[0.1,1.1]},\,R_{K}^{[1.1,6]},\,R_{K^{*}}^{[0.1,1.1]},\,R_{K^{*}}^{[1.1,6]}$

LHCb, arXiv:2212.09152, arXiv:2212.09153.

- ▶ sample of B meson decays in pp collisions collected between 2011 and 2018 (integrated luminosity of 9 fb^{-1})
- ▶ new modelling of residual backgrounds due to misidentified hadronic decays
- deviations from SM by $\sim -0.0, +1.1, +0.5$ and -0.4σ

KM50, 10 Feb. 2023

Leptonic modes $B_{s,d} \to \mu^+ \mu^-$

Measurements of $\mathcal{B}(B_{s,d} \to \mu^+ \mu^-)$ by LHCb, CMS, and ATLAS show deviations of only about ~ 1σ with respect to SM predictions*

ATLAS, arXiv:1812.03017 CMS, arXiv:1910.12127,**2212.10311** LHCb, arXiv:1703.05747,2108.09283

ATLAS update missing \Rightarrow full Run 1 + Run 2 LHC combination

*: depends on parameters like V_{cb}

Bobeth, Buras, arXiv:2104.09521

Theoretical Framework

 $b \to s \ell \ell$ in the Weak Effective Theory

► Effective Hamiltonian at scale m_b : $\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff, sl}} + \mathcal{H}_{\text{eff, had}}$

▶ Semileptonic operators: $(\mathcal{N} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \approx (34 \text{ TeV})^{-2})$

$$\mathcal{H}_{\rm eff, \ sl} = -\mathcal{N}\bigg(C_7 O_7 + C_7' O_7' + \sum_{\ell} \sum_{i=9,10,P,S} \left(C_i^{\ell} O_i^{\ell} + C_i'^{\ell} O_i'^{\ell}\right)\bigg) + \text{h.c.}$$

$$\begin{aligned} O_7^{(\prime)} &= \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu} P_{R(L)} b) F^{\mu\nu} , \quad O_9^{(\prime)\ell} &= (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\ell}\gamma^\mu \ell) , \quad O_{10}^{(\prime)\ell} &= (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) . \\ C_7^{\rm SM} &\simeq -0.3 , \qquad \qquad C_9^{\rm SM} \simeq 4 , \qquad \qquad C_{10}^{\rm SM} \simeq -4 . \end{aligned}$$

Not considered here: (pseudo)scalar $O_{P,S}$ vanish in SM, could appear at dim. 6 in SMEFT (and tensor O_T only at dim. 8 in SMEFT)

► Hadronic operators:

$$\mathcal{H}_{\text{eff, had}} = -\mathcal{N} \frac{16\pi^2}{e^2} \left(C_8 O_8 + C'_8 O'_8 + \sum_{i=1,\dots,6} C_i O_i \right) + \text{h.c.}$$

e.g. $O_1 = (\bar{s}\gamma_\mu P_L T^a c) (\bar{c}\gamma^\mu P_L T^a b), \quad O_2 = (\bar{s}\gamma_\mu P_L c) (\bar{c}\gamma^\mu P_L b)$

.

Theory of $B \to M\ell\ell$ decays $(M = K, K^*, \phi)$

$$\mathcal{M}(B \to M\ell\ell) = \langle M\ell\ell | \mathcal{H}_{\text{eff}} | B \rangle = \mathcal{N} \Big[\left(\mathcal{A}_V^{\mu} + \mathcal{H}^{\mu} \right) \, \bar{u}_\ell \gamma_\mu v_\ell + \mathcal{A}_A^{\mu} \, \bar{u}_\ell \gamma_\mu \gamma_5 v_\ell + \mathcal{A}_S \, \bar{u}_\ell v_\ell + \mathcal{A}_P \, \bar{u}_\ell \gamma_5 v_\ell \Big]$$

- ▶ Wilson coefficients $C_i = C_i^{\text{SM}} + C_i^{\text{NP}}$: perturbative, short-distance physics (q^2 independent), well-known in SM, parameterise heavy NP
- local and non-local hadronic matrix elements: non-perturbative, long-distance physics (q² dependent), main source of uncertainty

Bernat Capdevila

KM50, 10 Feb. 2023

Local matrix elements

 $\begin{aligned} \mathcal{A}_{V}^{\mu} &= -\frac{2im_{b}}{q^{2}} C_{7} \langle M | \bar{s} \, \sigma^{\mu\nu} q_{\nu} \, P_{R} \, b | B \rangle + C_{9} \langle M | \bar{s} \, \gamma^{\mu} \, P_{L} \, b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow \mathcal{A}_{A}^{\mu} &= C_{10} \langle M | \bar{s} \, \gamma^{\mu} \, P_{L} \, b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}') \\ \mathcal{A}_{S,P} &= C_{S,P} \langle M | \bar{s} \, P_{R} \, b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}') \end{aligned}$

• $\langle M | \bar{s} \Gamma_i b | B \rangle$ matrix elements are parameterised by:

- **3** form factors for each spin zero final state M = K
- ▶ 7 form factors for each spin one final state $M = K^*, \phi$
- ▶ Determination of form factors
 - ▶ high q^2 : Lattice QCD

HPQCD, arXiv:1306.2384 Fermilab, MILC, arXiv:1509.06235 Horgan, Liu, Meinel, Wingate, arXiv:1310.3722, arXiv:1501.00367

low q²: Continuum methods e.g. Light-cone sum rules (LCSR) Ball, Zwicky, arXiv:hep-ph/0406232 Khodjamirian, Mannel, Pivovarov, Wang, arXiv:1006.4945 Bharucha, Straub, Zwicky, arXiv:1503.05534 Gubernari, Kokulu, van Dyk, arXiv:1811.00983

low + high q^2 : Combined fit to continuum methods + lattice

LICE Altmannshofer, Straub, arXiv:1411.3161 Bharucha, Straub, Zwicky, arXiv:1503.05534 Gubernari, Kokulu, van Dyk, arXiv:1811.00983 Form factors $B \to V \ (V = K^*, \phi)$

Bharucha, Straub, Zwicky, arXiv:1503.05534

Gubernari, Kokulu, van Dyk, arXiv:1811.00983

Form factors $B \to K$

- Lattice QCD calculation of the $B \to K$ form factors across the full physical q^2 range
 - \Rightarrow highly improved staggered quark (HISQ) formalism (valence quarks)
 - gluon field configurations by MILC \Rightarrow
 - first fully relativistic calculation, using the heavy-HISQ method \Rightarrow

Bernat Capdevila

Non-local matrix elements

$$\mathcal{H}^{\mu} = \frac{-16i\pi^2}{q^2} \sum_{i=1..6,8} C_i \int dx^4 e^{iq \cdot x} \langle M | T\{j_{\rm em}^{\mu}(x), O_i(0)\} | B \rangle$$
$$j_{\rm em}^{\mu} = \sum_q Q_q \, \bar{q} \gamma^{\mu} q$$

- ► Contributions at low q² from QCD factorization (QCDF) Beneke, Feldmann, Seidel, arXiv:hep-ph/0106067
- ▶ Beyond-QCDF contributions the main source of uncertainty
- ▶ Non-local contributions can mimic New Physics in C_9
- \blacktriangleright Several approaches to estimate beyond-QCDF contributions at low q^2
 - ▶ fit of sum of resonances to data
 ▶ direct fit to angular data
 ▶ Light-Cone Sum Rules estimates
 ▶ analyticity + experimental data on b → scc̄
 ▶ Blake, Egede, Owen, Pomery, Petridis, arXiv:1709.03921
 ▶ Blake, Egede, Owen, Pomery, Petridis, arXiv:1512.07157
 ▶ Blake, Egede, Owen, Pomery, Petridis, arXiv:1006.4945
 ▶ Blake, Egede, Owen, Pomery, Petridis, arXiv:1007.07305
 ▶ Blake, Egede, Owen, Pomery, Petridis, arXiv:2011.09813

KM50, 10 Feb. 2023

"clean liness" of $b \to s$ observables in the SM

	parametric uncertainties	form factors	non-local matrix elements	
$\mathcal{B}(B \to M\ell\ell)$	×	×	×	
angular observables	1	×	×	
$\overline{\mathcal{B}}(B_s \to \ell \ell)$	×	1	(N/A)	
LFU observables	1	1	1	

Theory setup

Improved QCDF

Improved QCDF (iQCDF) approach: $m_b \to \infty$ and $E_{V,P} \to \infty$ ($V = K^*, \phi, P = K$) decomposition of full form factors (FF)

$$F^{\text{Full}}(q^2) = F^{\infty}(\xi_{\perp}(q^2), \xi_{\parallel}(q^2)) + \Delta F^{\alpha_s}(q^2) + \Delta F^{\Lambda}(q^2)$$

where F stands for any FF (either helicity or transversity basis)

Charles et al; hep-ph/9901378 Beneke, Feldman; hep-ph/0008255 Descotes-Genon, Hofer, Matias, Virto; arXiv:1407.8526

- ▶ $m_b \to \infty$ and $E_{V,P} \to \infty$ symmetries: low- q^2 and LO in α_s and Λ/m_b
 - \Rightarrow **Dominant correlations** automatically taken into account (important for a maximal cancellation of errors)

Capdevila, Descotes-Genon, Hofer, Matias; arXiv:1701.08672

▶ $\mathcal{O}(\alpha_s)$ corrections ⇒ QCDF

$$\langle \ell^+ \ell^- \bar{K}_i^* | \mathcal{H}_{\text{eff}} | \bar{B} \rangle = \sum_{a,\pm} \frac{C_{i,a} \xi_a}{E_i + \Phi_{B,\pm} \otimes T_{i,a,\pm} \otimes \Phi_{K^*,a}} \quad (i = \bot, \|, 0)$$

Beneke, Feldma

Beneke, Feldman, nep-ph/0008255 Beneke, Feldman, Seidel; hep-ph/0106067

•
$$\mathcal{O}(\Lambda/m_b)$$
 corrections $\Rightarrow \Delta F^{\Lambda}(q^2) = a_F + b_F \frac{q^2}{m_B^2} + c_F \frac{q^4}{m_B^4}$

Jäger, Camalich; arXiv:1212.2263 Descotes-Genon, Hofer, Matias, Virto; arXiv:1407.8526

Estimating beyond QCDF contribution at low- q^2

▶ LO (factorisable) charm-loop contribution accounted for in the $Y(q^2)$ (perturbative) function,

$$C_9^{\text{eff}}(q^2) = C_9^{\text{SM}} + Y(q^2)$$

Buras, Münz; hep-ph/9501281 Krüger, Lunghi; hep-ph/0008210

- Estimate of the soft-gluon emission contribution at low q^2 :
 - \Rightarrow Calculations based on continuum methods

Khodjamirian, Mannel, Pivovarov, Wang; arxiv:1006.4945 Gubernari, van Dyk, Virto; arxiv:2011.09813

 \Rightarrow Shift in C_9^{eff} . Order of magnitude for the shift estimated from theory calculations

$$C_{9i}^{\text{eff}}(q^2) = C_9^{\text{eff}}(q^2) + C_9^{\text{NP}} + s_i \delta C_9^{\text{LD},i}(q^2) \quad (i = \bot, \|, 0)$$

Descotes-Genon, Hofer, Matias, Virto; arxiv:1407.8526 Descotes-Genon, Hofer, Matias, Virto; arxiv:1510.04239

Estimating beyond QCDF contribution at low- q^2

▶ Parameterisation for the long-distance contribution

$$\begin{split} \delta C_9^{\mathrm{LD},\perp}(q^2) &= \frac{a^{\perp} + b^{\perp} q^2 (c^{\perp} - q^2)}{q^2 (c^{\perp} - q^2)} \qquad \delta C_9^{\mathrm{LD},\parallel}(q^2) = \frac{a^{||} + b^{||} q^2 (c^{||} - q^2)}{q^2 (c^{||} - q^2)} \\ \delta C_9^{\mathrm{LD},0}(q^2) &= \frac{a^0 + b^0 (q^2 + s_0) (c^0 - q^2)}{(q^2 + s_0) (c^0 - q^2)} \end{split}$$

 \Rightarrow We vary s_i in the range [-1, 1]

 $\Rightarrow a^i, b^i, c^i$ parameters floated according to KMPW calculation

Khodjamirian, Mannel, Pivovarov, Wang, arXiv:1006.4945 Descotes-Genon, Hofer, Matias, Virto; arxiv:1407.8526 Descotes-Genon, Hofer, Matias, Virto; arxiv:1510.04239

Summary theory framework

Theory status up to Dec. 2022

- ▶ Pseudoscalar channels: $B \to K \ell \ell$
 - \Rightarrow Local form factors: improved QCDf with KMPW LCSRs (low- q^2), Lattice QCD (high- q^2)
 - \Rightarrow Non-local form factors: parametrisation based on KMPW LCSRs
- Vector channels: $B \to \{K^*, \phi\} \ell \ell$
 - \Rightarrow Local form factors: improved QCDf with KMPW LCSRs (low- q^2), Lattice QCD (high- q^2)
 - $\Rightarrow\,$ Non-local form factors: parametrisation based on KMPW LCSRs

Descotes-Genon, Hofer, Matias, Virto; arxiv:1510.04239 Algueró, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2104.08921

Updated theory status

- ▶ Pseudoscalar channels: $B \to K \ell \ell$
 - \Rightarrow Local form factors: Lattice QCD (all- q^2)
 - \Rightarrow Non-local form factors: parametrisation based on KMPW LCSRs
- ▶ Vector channels: $B \to \{K^*, \phi\} \ell \ell$
 - \Rightarrow Local form factors: improved QCDf based on GKvD LCSRs (low-q²), Lattice QCD (high-q²)
 - $\Rightarrow\,$ Non-local form factors: parametrisation based on KMPW LCSRs

Algueró, Biswas, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; In Preparation

Non-negligible impact on $B \to K \ell \ell$ observables

Predictions with HPOCD'22 Form Factors							
$\frac{10^7 \times \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{10^7 \times \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}$	Standard Model	Experiment	Pull				
[0.1, 0.98]	0.325 ± 0.025	0.29 ± 0.02	+1.0				
[1.1, 2]	0.334 ± 0.025	0.21 ± 0.02	+4.0				
[2, 3]	0.371 ± 0.028	0.28 ± 0.02	+2.5				
[3, 4]	0.371 ± 0.028	0.25 ± 0.02	+3.4				
[4, 5]	0.371 ± 0.028	0.22 ± 0.02	+4.5				
[5, 6]	0.371 ± 0.030	0.23 ± 0.02	+4.0				
[6, 7]	0.372 ± 0.033	0.25 ± 0.02	+3.3				
[7, 8]	0.376 ± 0.043	0.23 ± 0.02	+3.1				
[15, 22]	1.150 ± 0.161	0.85 ± 0.05	+1.8				

HPQCD, arXiv:2207.12468 LHCb, arXiv:1403.8044

Fit setup

Observables in $b \to s\ell\ell$ global analyses

- \blacktriangleright Inclusive decays
 - $\blacktriangleright B \to X_s \gamma \ (\mathcal{B})$
 - $\blacktriangleright B \to X_s \ell^+ \ell^- (\mathcal{B})$
- ▶ Exclusive leptonic decays
 - $\blacktriangleright B_{s,d} \to \ell^+ \ell^- \ (\mathcal{B}; \ \ell = \mu, \ \boldsymbol{e})$
- ▶ Exclusive radiative/semileptonic decays
 - $\blacktriangleright B \to K^* \gamma \ (\mathcal{B}, S_{K^* \gamma}, A_I)$
 - ► $B^{(0,+)} \rightarrow K^{(0,+)} \ell^+ \ell^- (\mathcal{B}_\mu, \mathbb{R}_{K^+}, \mathbb{R}_{K_S}, \text{ angular observables})$
 - $\blacktriangleright \ B^{(0,+)} \to K^{*(0,+)} \ell^+ \ell^- \ (\mathcal{B}_{\mu}, \, \underline{R_{K^{*0}}}, \, R_{K^{*+}}, \, \text{angular observables})$
 - $B_s \to \phi \mu^+ \mu^-$ (\mathcal{B} , angular observables)
 - $\Lambda_b \to \Lambda \mu^+ \mu^-$ (\mathcal{B} , angular observables) (not included)
- ▶ Fits might include ~ 250 observables \Rightarrow global $b \rightarrow s\ell\ell$ analyses

Statistical framework

We parametrise the Wilson coefficients as,

$$C_i = C_i^{\text{SM}} + C_i^{\text{NP}}$$
 $(i = 7_{\mu}^{(\prime)}, 9_{\mu}^{(\prime)}, 10_{\mu}^{(\prime)}, C_i^{\text{NP}} \in \mathbb{R} \Rightarrow \text{no CPV})$

Standard frequentist fit to the NP contributions to the Wilson coefficients,

$$\chi^{2}(C_{i}^{\mathrm{NP}}) = \left(\mathcal{O}^{\mathrm{th}}(C_{i}^{\mathrm{NP}}) - \mathcal{O}^{\mathrm{exp}}\right)_{i} Cov_{ij}^{-1} \left(\mathcal{O}^{\mathrm{th}}(C_{i}^{\mathrm{NP}}) - \mathcal{O}^{\mathrm{exp}}\right)_{j}$$

- Both theory and experiment contribute to the covariance matrix $\Rightarrow Cov = Cov^{\text{th}} + Cov^{\text{exp}}$
- ► Experimental covariance
 - \Rightarrow **Experimental correlations** between observables (if not provided, assumed uncorrelated). Assume gaussian errors (symmetrize if needed)
- ► Theoretical covariance
 - \Rightarrow Compute the **theoretical correlations** by performing a multivariate gaussian scan over all nuisance parameters
- $\blacktriangleright Cov = Cov(C_i)$
 - $\Rightarrow \text{Mild dependency} \Rightarrow Cov = Cov_{\text{SM}} \equiv Cov(C_i = 0) \text{ Descotes-Genon, Hofer, Matias, Virto; arXiv:1510.04239}$ Capdevila, Crivellin, Descotes-Genon, Matias, Virto; arXiv:1704.05340

New Physics interpretation

1D NP fits

	Global (Jul. 2022)					
1D Hyp.	bfp	1σ	$\operatorname{Pull}_{\mathrm{SM}}$	p-value (%)		
$C_{9\mu}^{\rm NP}$	-0.67 (-1.01)	[-0.83, -0.52] ($[-1.15, -0.87]$)	4.5(7.0)	19.6 (24.0)		
$C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$	-0.19 (-0.45)	[-0.25, -0.12] ($[-0.52, -0.37]$)	3.0(6.5)	9.5 (16.9)		
$C_{9\mu}^{\rm NP} = -C_{9\mu}'$	-0.49(-0.92)	[-0.67, -0.32] ($[-1.07, -0.75]$)	3.1(5.7)	10.0(8.2)		
	LFUV					
1D Hyp.	bfp	1σ	$\operatorname{Pull}_{\mathrm{SM}}$	p-value (%)		
$C_{9\mu}^{\rm NP}$	-0.21 (-0.87)	[-0.39, -0.04] ($[-1.11, -0.65]$)	1.2(4.4)	92.4 (40.7)		
$C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$	-0.08(-0.39)	[-0.15, -0.01] ($[-0.48, -0.31]$)	1.1(5.0)	91.5 (73.5)		
$C_{9\mu}^{\rm NP} = -C_{9\mu}'$	-0.04 (-1.60)	[-0.26, 0.15] ($[-2.10, -0.98]$)	0.2 (3.2)	87.5(8.4)		

- \Rightarrow Substantial drop in significances
- $\Rightarrow C_{9\mu}^{\rm NP}$ is the strongest signal for the Global fit
- \Rightarrow *p*-value for $C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}}$ reduces significantly (less fit coherence: ang. obs. vs LFU ratios)
- $\Rightarrow\,$ NP contributions to the WC compatible with SM values for the LFUV fit

Algueró, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2104.08921 Algueró, Biswas, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; In preparation

2D NP fits (up to Jul. 2022)

- ▶ 3σ regions experiment by experiment
- ▶ Pulls_{SM} (p-values): 6.8σ (25.6%), 7.1σ (31.8%) & 6.7σ (23.8%) (respectively)
- ▶ High significances for NP solutions with right-handed currents (RHC)
- C_{9e}^{NP} compatible with SM

Algueró, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2104.08921

Updated 2D NP fits

- ▶ 3σ regions experiment by experiment
- ▶ Pulls_{SM} (p-values): 4.4σ (21.6%), 4.3σ (20.5%) & 5.6σ (40.4%) (respectively)
- ▶ Drop in significance for NP solutions with RHC (compatible with SM)
- ▶ C_{9e}^{NP} increases. Compatible with LFU NP

Algueró, Biswas, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; In Preparation

Are we overlooking LFU NP?

 \Rightarrow Rotation of the basis of operators with a **LFU-LFUV alignment** (instead of flavour)

 $C_{i\ell}^{\rm NP} = C_{i\ell}^{\rm V} + C_i^{\rm U} \quad (C_i^{\rm U} \text{ the same } \forall \ell)$

where i = 9, 10, 9', 10' and $\ell = e, \mu$ (trivial extension to $\ell = \tau$)

 \Rightarrow The NP parameter space can be equally described with $\{C_{i\mu}^{\rm NP}, C_{ie}^{\rm NP}\}$ or $\{C_{i\mu}^{\rm V}, C_i^{\rm U}\}$ $(C_{ie}^{\rm V}=0)$

 \Rightarrow The LFU vs LFUV language generates non-obvious NP directions in the μ vs e language

$$\left\{ \begin{array}{c} C_{9\mu}^{\mathrm{V}} = -C_{10\mu}^{\mathrm{V}} \\ C_{9}^{\mathrm{U}} \end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_{9\mu}^{\mathrm{NP}} = -C_{10\mu}^{\mathrm{NP}} + C_{9e}^{\mathrm{NP}} \\ C_{9e}^{\mathrm{NP}} \end{array} \right.$$

Algueró, BC, Descotes-Genon, Masjuan, Matias; arxiv:1809.08447

NP fits with LFU contributions (up to Jul. 2022)

 $\blacktriangleright\,$ Two-parameter fit in space of $C_{9\mu}^{\rm V}=-C_{10\mu}^{\rm V}$ and $C_9^{\rm U}$

scenario first considered in Algueró et al., arXiv:1809.08447

- Significant preference for **non-zero** $C_9^{\rm U}$
- ▶ This scenario is one of the most successful NP solutions to solve the $b \rightarrow s\ell\ell$ anomalies
 - \Rightarrow Pull_{SM} = 7.2 σ
 - ⇒ It successfully describes, with optimal internal consistency, $b \rightarrow s\mu\mu$ angular data + LFU ratios
 - \Rightarrow Could be mimicked by hadronic effects
 - \Rightarrow Can arise from RG effects:

Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068

NP fits with LFU contributions

 $\blacktriangleright\,$ Two-parameter fit in space of $C_{9\mu}^{\rm V}=-C_{10\mu}^{\rm V}$ and $C_9^{\rm U}$

scenario first considered in Algueró et al., arXiv:1809.08447

- ▶ Large **non-zero** C_9^{U} but LFUV compatible with 0
- ▶ This scenario is one of the most successful NP solutions to solve the $b \rightarrow s\ell\ell$ anomalies
 - \Rightarrow Pull_{SM} = 5.6 σ
 - ⇒ It successfully describes, with optimal internal consistency, $b \rightarrow s\mu\mu$ angular data + LFU ratios
 - \Rightarrow Could be mimicked by hadronic effects
 - \Rightarrow Can arise from RG effects:

Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068

 $b \to s \tau \tau$ as a proof of universal NP

 $\Rightarrow b \rightarrow s \tau \tau$ channels are enhanced under the presence of $C_9^{\rm U}$

- $\Rightarrow C_9^{\rm U}$ of the size of the contribution from the correlation between $b \to s\ell\ell$ and $b \to c\ell\nu$
- \Rightarrow Typical enhancement by 10²-10³ compared to SM value.

Conclusions

Conclusions

- ▶ Important tensions in the inner structure of the fit:
 - \Rightarrow LFU ratios are SM-like
 - $\Rightarrow B \to K^{(*)}\mu\mu$ and branching ratios for $B \to K\mu\mu$ continue to deviate with high significance
- $\blacktriangleright\,$ Substantial reduction on the significance of the most preferred NP scenarios
 - $\Rightarrow C_{9\mu}^{\rm NP}$ continues to be the WC where most of the NP signal is encapsulated
 - \Rightarrow LFUV components are mostly suppressed
 - \Rightarrow High significances for scenarios with universal NP $C_9^{\rm U}$
- Exploit the correlations among $b \to s\ell\ell$ and $b \to c\ell\nu$ and $b \to s\tau\tau$ to test the nature of C_9^{U} : either NP or hadronic effects (or a combination)

Thank you!

Backup slides

Consistency over q^2

Testing the q^2 dependence of $C_9^{\rm NP}$ by means of data:

- Fit to $B \to K^* \mu^+ \mu^-$ (B's + Ang. obs) + $B_s \to \mu^+ \mu^- + B \to X_s \mu^+ \mu^- + b \to s\gamma$
- $\blacktriangleright \ C_9^{\rm NP}$ bin-by-bin fit (assuming KMPW-like $\delta C_9^{{\rm LD},i}(q^2))$
- Good agreement with global fit $(2\sigma \text{ range})$
- ▶ No indication of a strong q^2 dependence
- ▶ Consistency large and low recoil (different theo. treatments)

Bernat Capdevila