Beautiful and charming lattice QCD calculations

Oliver Witzel

KEK Flavor Factories workshop February 10, 2023

Simulating heavy flavors

- ▶ Traditionally: simulate charm and bottom using effective actions
 - → Heavy quark effective Theory (HQET), Non-Relativistic QCD, Relativistic Heavy Quark (RHQ, Fermilab, Tsukuba)
 - \rightarrow Allows to simulate charm and bottom quarks on coarser lattices
 - \rightarrow Additional systematic uncertainties, partly perturbative renormalization, \ldots
 - \rightarrow Few percent total errors
- ▶ State-of-the-art: fully relativistic simulations at $a^{-1} > 2$ GeV
 - $_{
 m
 m \rightarrow}$ Heavy Highly Improved Staggered Quarks (HISQ), Heavy Domain-Wall Fermions (DWF), ...
 - \rightarrow Same action for light (up/down/strange) as for heavy (charm/bottom) quarks
 - ---- Simulate heavier than charm and extrapolate
 - \rightarrow Fully nonperturbative renormalization straight-forward, reduced systematic uncertainties
 - \rightarrow Sub-percent precision feasible \rightsquigarrow QED effects become relevant

Cabbibo-Kobayashi-Maskawa (CKM) matrix

▶ Beautiful are of course calculations allowing us to extract CKM matrix elements → Combination of experimental measurement and theoretical prediction

$$\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

Cabbibo-Kobayashi-Maskawa (CKM) matrix

- ▶ Beautiful are of course calculations allowing us to extract CKM matrix elements → Combination of experimental measurement and theoretical prediction
- \blacktriangleright Lattice QCD prefers processes with at most a single hadronic final state

$$\begin{bmatrix} \pi \to \ell \nu & K \to \ell \nu & B \to \pi \ell \nu \\ & K \to \pi \ell \nu & B_s \to K \ell \nu \end{bmatrix}$$
$$\begin{bmatrix} D \to \ell \nu & D_s \to \ell \nu & B_{(s)} \to D_{(s)} \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu & B_{(s)} \to D^*_{(s)} \ell \nu \\ B_d \leftrightarrow \overline{B}_d & B_s \leftrightarrow \overline{B}_s \end{bmatrix}$$

Cabbibo-Kobayashi-Maskawa (CKM) matrix

- ▶ Beautiful are of course calculations allowing us to extract CKM matrix elements → Combination of experimental measurement and theoretical prediction
- ▶ Lattice QCD prefers processes with at most a single hadronic final state

$$\begin{bmatrix} \pi \to \ell \nu & K \to \ell \nu & B \to \pi \ell \nu \\ & K \to \pi \ell \nu & B_s \to K \ell \nu \end{bmatrix}$$
$$\begin{bmatrix} D \to \ell \nu & D_s \to \ell \nu & B_{(s)} \to D_{(s)} \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu & B_{(s)} \to D^*_{(s)} \ell \nu \\ B_d \leftrightarrow \overline{B}_d & B_s \leftrightarrow \overline{B}_s \end{bmatrix}$$

- ► A (biased) selection of highlights
 - $_{
 m
 ightarrow}$ V_{ub} from $B
 ightarrow \pi \ell
 u$
 - $\to V_{cb}$ form $B_s \to D_s^* \ell \nu$
 - $\rightarrow V_{cd}$, V_{cs} from leptonic $D_{(s)}$ decays
- ► Talk by Aida El-Khadra [Saturday]

introduction	$B \rightarrow \pi \ell \nu$	$B_5 \rightarrow D_c^* \ell \nu$	f _D and f _D
000	00000	000 3	000 ^D S

Exclusive Semi-Leptonic Decays: Example $B \rightarrow \pi \ell \nu$

 \blacktriangleright Conventionally parametrized placing the B meson at rest

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_\pi^2 - M_\pi^2}}{q^4 M_B^2}$$

experiment
Known
$$\times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_B^2 (E_\pi^2 - M_\pi^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_B^2 - M_\pi^2)^2 |f_0(q^2)|^2 \right]$$

nonperturbative input

summarv

introduction	$B \rightarrow \pi \ell \nu$	$B_s \rightarrow D_s^* \ell \nu$	fD and fD
000	00000	000	000 5

Exclusive Semi-Leptonic Decays: Example $B \rightarrow \pi \ell \nu$

▶ Calculate hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_{+}(q^{2})$ and $f_{0}(q^{2})$

$$egin{aligned} &\langle \pi | m{V}^{\mu} | m{B}
angle &= f_+(q^2) \left(m{p}^{\mu}_B + m{p}^{\mu}_\pi - rac{M_B^2 - M_\pi^2}{q^2} m{q}^{\mu}
ight) \ &+ f_0(q^2) rac{M_B^2 - M_\pi^2}{q^2} m{q}^{\mu} \end{aligned}$$

summarv

functions an ensemble set

Obtain full error budget

 Kinematical expansion to cover full q² range

 Extrapolate to physical masses and the continuum

 Combine with experiment, compare to other determinations

introduction 000	$\begin{array}{c} B \rightarrow \pi \ell \nu \\ 0 0 0 \bullet 0 \end{array}$	$\begin{array}{c} B_{s} \rightarrow D_{s}^{*} \ell \nu \\ 000 \end{array}$	$f_D \text{ and } f_{D_S}$	summary 00

FLAG average [FLAG 2021]

- ► FLAG average: Fermilab/MILC [Bailey et al. PRD92(2015)014024], RBC/UKQCD [Flynn et al. PRD 91 (2015) 074510] → Shown in addition HPQCD [Dalgic et al. PRD73(2006)074502][PRD75(2007)119906]
- ▶ Used effective actions only allowed determinations of form factors at large q^2
- ► Combined fit with experimental data gives |V^{excl}_{ub}| [BaBar PRD 83 (2011) 032007][PRD 86 (2012) 092004] [Belle PRD 83 (2011) 071101][PRD 88 (2013) 032005]
- ▶ Shape of lattice data consistent with experimental data

introduction	$B \rightarrow \pi \ell \nu$	$B_s \rightarrow D_c^* \ell \nu$	fD and fD
000	00000	000 *	000

New in 2022: JLQCD [Colquhoun et al. PRD 106 (2022) 054502]

Unitary setup

- → MDWF light/strange and heavy quarks with $am_c \leq am_Q \leq 2.44 \cdot am_c$
- \rightarrow Additional extrapolation in the heavy quark mass to reach m_b
- \rightarrow Fully nonperturbative renormalization
- ▶ *a* ≈ 0.044 fm, 0.055 fm, 0.080 fm

ho $M_\pi\gtrsim 230$ MeV

summarv

introduction	$B \rightarrow \pi \ell \nu$	$B_5 \rightarrow D_c^* \ell \nu$
000	00000	000

New in 2022: JLQCD [Colquhoun et al. PRD 106 (2022) 054502]

- Unitary setup
 - → MDWF light/strange and heavy quarks with $am_c \leq am_Q \leq 2.44 \cdot am_c$
 - \rightarrow Additional extrapolation in the heavy quark mass to reach m_b
 - \rightarrow Fully nonperturbative renormalization
- ightarrow *a* pprox 0.044 fm, 0.055 fm, 0.080 fm
- ho $M_\pi\gtrsim 230$ MeV
- ▶ Comparable stat. and sys. errors → Total errors: $f_+ \sim 10\%$, $f_0 \sim 6\%$

introduction	$B \rightarrow \pi \ell \nu$	$B_s \rightarrow D_c^* \ell \nu$	f _D and f _D	summary
000	0000	000 *	000 ²⁵	00

New in 2022: JLQCD [Colquhoun et al. PRD 106 (2022) 054502]

► Joint fit to determine $|V_{ub}|$ $\Rightarrow |V_{ub}| = (3.93 \pm 0.41) \cdot 10^{-3}$

- Updates from other collaborations expected relatively soon
- ▶ Shape parameters of BCL *z*-fit
 - \rightarrow Tension with BaBar 2010
 - \rightarrow Looking forward to new data from Belle II

 $B_s \to D_s^* \ell \nu$

$$\begin{array}{ll} \underset{0}{\overset{\text{introduction}}{\overset{\text{B}}{\rightarrow}} & \underset{0}{\overset{\text{B}}{\rightarrow}} & \underset{0}{\overset{\text{B}}{\rightarrow}} & \underset{0}{\overset{\text{D}}{\rightarrow}} & \underset{0}{\overset{\text{B}}{\rightarrow}} & \underset{0}{\overset{\text{D}}{\rightarrow}} & \underset{0}{\overset{\text{B}}{\rightarrow}} & \underset{0}{\overset{\text{D}}{\rightarrow}} & \underset{0}{\overset{\text{B}}{\rightarrow}} & \underset{0}{\overset{\text{D}}{\rightarrow}} & \underset{0}{\overset{0}{\overset{0}} & \underset{0}{\overset{0}} & \underset{0}} & \underset{0}{\overset{0}} & \underset{0}{\overset{0}} & \underset{0}{\overset{0}} & \underset{0}{\overset{0}$$

- ▶ Determine the four form factors $V(q^2)$, $A_0(q^2)$, $A_1(q^2)$, $A_2(q^2)$ or in HQE convention $h_V(w)$, $h_{A_0}(w)$, $h_{A_1}(w)$, $h_{A_2}(w)$
- ▶ Narrow-width approximation i.e. D_s^* is treated as a QCD-stable particle
- Proxy for $B \to D^* \ell \nu$ (only spectator quark differs)

introduction 000 $B \rightarrow \pi \ell \nu$ 00000 $B_s \rightarrow D_s^* \ell \nu$ 000

summary 00

HPQCD $B_s \rightarrow D_s^* \ell \nu$ [Judd, Davies PRD105(2022).094506]

- All-HISQ setup
 - \rightarrow Fully non-perturbative renormalization
 - \rightarrow Simulate heavier-than-charm \rightarrow close-to-bottom
 - \rightarrow Directly cover most of the allowed q^2 range at the finest lattice spacing
 - ---- Parametrize pole mass for different charm masses

 $\blacktriangleright B
ightarrow D^* \ell
u$

- $\rightarrow Fermilab/MILC \ [{\tt Bazavov \ et \ al. \ EPJC \ 82(2022)1141}]$
- \rightarrow JLQCD [Kaneko et al. PoS Lattice2021 (2022) 561]
- \rightarrow LANL/SWME [Jang et al. PoS Lattice2019 (2020) 056]
- $\rightarrow HPQCD ~[{\sf Harrison Talk Barolo 2022}]$

 $B \rightarrow \pi \ell \nu$ 00000 $\begin{array}{c} B_{s} \rightarrow D_{s}^{*} \ell \nu \\ \circ \circ \bullet \end{array}$

summary 00

HPQCD $B_s
ightarrow D_s^* \ell
u$ [Judd, Davies PRD105(2022).094506]

- All-HISQ setup
 - \rightarrow Fully non-perturbative renormalization
 - \rightarrow Simulate heavier-than-charm \rightarrow close-to-bottom
 - \rightarrow Directly cover most of the allowed q^2 range at the finest lattice spacing
 - ---- Parametrize pole mass for different charm masses
- ► Combination with LHCb [LHCb JHEP12(2020)144] $\rightarrow |V_{cb}|_{BGL}^{excl} = 42.7(1.5)_{lat}(1.7)_{exp}(0.4)_{em} \times 10^{-3}$ $\rightarrow |V_{cb}|_{CLN}^{excl} = 41.6(1.5)_{lat}(1.6)_{exp}(0.4)_{em} \times 10^{-3}$

► PDG 2022
$$|V_{cb}|^{excl} = 39.4(0.8) \times 10^{-3}$$

 $|V_{cb}|^{incl} = 42.2(0.8) \times 10^{-3}$

[PDG, Workman et al. PTEP (2022) 083C01]

f_D and f_{D_s}

Extracting $|V_{cd}|$ and $|V_{cs}|$ from leptonic decays

Branching fractions of leptonic decay modes well measured

- $\rightarrow D^+$: CLEO-c, BESIII
- $ightarrow D_s^+$: CLEO-c, BaBar, Belle, BESIII
- ▶ Allows to infer $|V_{cq}| \cdot f_{D_a^+}$ for q = d, s

▶ Calculating $f_{D_q^+}$ on the lattice gets us the CKM matrix elements → Only simple 2-pt functions needed

 $\begin{array}{c} B \rightarrow \, \pi \ell \nu \\ 0 0 0 0 0 \end{array}$

 $B_S \rightarrow D_S^* \ell \nu$ 000

$f_D \text{ and } f_{D_s}$

summary 00

Lattice calculations of f_D and f_{D_s}

► Consistent determinations by many groups [FLAG 2021] 2+1+1 flavor: $f_D = 212.0(0.7)$ MeV $f_D = 249.0(0.5)$ MeV [Fermilab/MILC PRD 98 (2018) 074512] [ETMC PRD 91 (2015) 054507]

$$_{
m int} |V_{cd}| = 0.2179(7)(57)$$
 and $|V_{cs}| = 0.983(2)(18)$

- ► Impressive sup-percent precision by Fermilab/MILC [Bazavov et al. PRD 98 (2018) 074512]
- ► Exploiting full power of 2+1+1 flavor HISQ ensembles
 - \rightarrow 6 different lattice spacings with physical quark masses

introduction	$B \rightarrow \pi \ell \nu$	$B_S \rightarrow D_c^* \ell \nu$
000	00000	000 3

Summary

 $\blacktriangleright B \to \pi \ell \nu$

- \rightarrow Consistent determinations of $|\textit{V}_{ub}|^{\mathsf{excl}}$ from different lattice collaborations
- \rightarrow New calculation by JLQCD with larger errors
- $_{\rightarrow}$ Puzzling tension between $|\textit{V}_{\textit{ub}}|^{\mathsf{excl}}$ and $|\textit{V}_{\textit{ub}}|^{\mathsf{incl}}$
- \rightarrow Desirable: calculation with physical light quarks to largely eliminate chiral extrapolation
- \sim New development: $|V_{ub}|^{\text{incl}}$ using lattice QCD see e.g. [Kellermann et al. PoS Lattice2022 (2023) 414]

 $\blacktriangleright B_{(s)} \to D^*_{(s)} \ell \nu$

- \rightarrow Finally lattice calculations over the full q^2 range for decays with vector final state
- \rightarrow More calculations underway

• f_D and f_{D_s}

- \rightarrow Sub-percent level precision \rightsquigarrow desirable to see more results at that level of precision
- \rightarrow Precise experimental measurements of $B^+_{(c)}$ leptonic branching fraction highly desirable

summary

fD and fDs