Current status and prospect of extreme ultraviolet resists

Takahiro Kozawa SANKEN, Osaka University

Semiconductor lithography

Most severe problem for realization of **EUV** lithography Resolution (Device performance = Value) TRADE-OFF Sensitivity Roughness (Throughput) (Yield) **Trade-off relationships between**

resolution, LER/LWR, and sensitivity

Most severe problem for realization of high NA EUV lithography

Concept of chemically amplified resist

Typical components: Partially protected polymer, Acid generator, Quencher

Acid generation through the decomposition of acid generators by exposure

 $Ph_3S^+X^- \longrightarrow H^+X^-$

Image formation utilizing acid-catalytic chain reaction

High sensitivity is obtained through acid-catalytic chain reaction. High resolution is obtained through the control of acid diffusion using quenchers.

Shot noise (EUV lithography)

Photons carry information for imaging.

However, the information is lost during the imaging process...

Imaging process

Understanding the total flow of information and energy is essential to the development of resist materials and processes.

*Smoothing can be used for the suppression of stochasticity by sacrificing the resolution.

Mechanism of LER generation

T. Kozawa et al., Appl. Phys. Express 6, 026502 (2013).

Mechanism of pinching and bridging generation

Fig. Defect generation model using the standard deviation (σ) of the number of protected units connected to a polymer molecule.

The suppression of both pinching and bridging are required for the fabrication of line-and-space patterns applicable to the device manufacturing.

Protected unit distribution

Protected unit distribution at centers of lines ($x=\pm$ HP)

Fitting equations

$$N_{\rm p} \leq L_{+} (12.5)$$

$$N_{\rm m}(x = \pm HP) = \frac{N_0 p_r}{\sqrt{2\pi}\sigma_{\rm line,r}} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm line,r}\right)^2}{2\sigma_{\rm line,r}^2}\right) + \frac{N_0 p_u}{\sqrt{2\pi}\sigma_{\rm line,u}} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm line,u}\right)^2}{2\sigma_{\rm line,u}^2}\right)$$

$$N_{\rm p} > L_{+}$$
$$N_{\rm m}(x = \pm HP) = \frac{N_0 p_u}{\sqrt{2\pi}\sigma_{\rm line,u}} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm line,u}\right)^2}{2\sigma_{\rm line,u}^2}\right)$$

Normalization constants (p_r, p_u)

$$\frac{p_r}{\sqrt{2\pi}\sigma_{\text{line,r}}} \int_{-\infty}^{L_+} \exp\left(-\frac{\left(N_{\text{p}} - N_{\text{line,r}}\right)^2}{2\sigma^2}\right) dN_{\text{p}} + \frac{p_u}{\sqrt{2\pi}\sigma_{\text{line,u}}} \int_{-\infty}^{\infty} \exp\left(-\frac{\left(N_{\text{p}} - N_{\text{line,u}}\right)^2}{2\sigma_{\text{line,u}}^2}\right) dN_{\text{p}} = 1_{\text{R}}$$

Protected unit distribution

Protected unit distribution at centers of spaces (*x***=0)** Fitting equations

$$N_{\rm p} \neq 0$$

$$N_{\rm m}(x=0) = \frac{N_{\rm p\neq0}}{\sqrt{2\pi}\sigma_{\rm space}} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm space}\right)^2}{2\sigma_{\rm space}^2}\right)$$

$$N_{\rm p} = 0$$

$$N_{\rm m}(x=0) = N_{\rm p0}$$

Normalization constant $(N_{p\neq 0})$

$$N_{\rm p0} + \frac{N_{\rm p\neq0}}{\sqrt{2\pi}\sigma_{\rm space}} \int_{0.5}^{\infty} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm space}\right)^2}{2\sigma_{\rm space}^2}\right) dN_{\rm p} = N_0$$

Pinching risk $R_{\rm p}$

Fing fisk
$$R_{\rm p}$$

 $R_{\rm p} = \frac{1}{N_0} \int_{-\infty}^{N_{\rm p,th}} N_m (x = \pm HP) dN_{\rm p}$
 $= \frac{p_r}{\sqrt{2\pi}\sigma_{\rm line,r}} \int_{-\infty}^{N_{\rm p,th}} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm line,r}\right)^2}{2\sigma^2}\right) dN_{\rm p} + \frac{p_u}{\sqrt{2\pi}\sigma_{\rm line,u}} \int_{-\infty}^{N_{\rm p,th}} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm line,u}\right)^2}{2\sigma_{\rm line,u}^2}\right) dN_{\rm p}$

Bridging risk $R_{\rm b}$

$$R_{\rm b} = \frac{1}{N_0} \int_{N_{\rm p,th}}^{\infty} N_m(x=0) dN_{\rm p}$$

$$= \frac{N_{\rm p\neq 0}}{N_0\sqrt{2\pi}\sigma_{\rm space}} \int_{N_{\rm p,th}}^{\infty} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm space}\right)^2}{2\sigma_{\rm space}^2}\right) dN_{\rm p}$$
Probability that a polymer molecule has protected
units larger than the dissolution threshold at spaces
$$= \frac{N_{\rm p\neq 0}}{N_0\sqrt{2\pi}\sigma_{\rm space}} \int_{N_{\rm p,th}}^{\infty} \exp\left(-\frac{\left(N_{\rm p} - N_{\rm space}\right)^2}{2\sigma_{\rm space}^2}\right) dN_{\rm p}$$

Meaning of bridging risk $R_{\rm b}$

Figure 9. Pitch 32 nm dense lines-space. Defect counts as pixels not ok for the three resists under examination at the optimum CD target. The inspected area is 268 μ m² equivalent to 4800 spaces and lines inspected. The resist with lower sensitivity (resist C) shows only one failure on one line (see SEM image above) and no nano-bridge failures (i.e. below the detection limit of 1E-7). D. D. Simone et al. Proc. SPIE 10583, 105830G (2018).

32 nm

16 nm

~5000 polymer molecules at bottom

We do not need to worry about an isolated insoluble polymer. We should consider that insoluble polymers happen to coexist near with this probability.

1000 nm

Bridging probability = $f(R_b) \sim R_b^n$

Total defect risk R_t

Dependence of defect risk on sensitizer concentration

Dependence of defect risk on thermalization distance

Half-pitch dependence of total defect risk

Summary

- ✓ The EUV lithography has been applied to high-volume production of semiconductor devices since 2019.
- ✓ The trade-off relationships between resolution, LER/LWR, and sensitivity were the most severe problem for the realization of EUV lithography.
- ✓ The suppression of stochastic defects is the most serious issue for the development of next-generation EUV lithography (High NA).
- ✓ The total defect risks exponentially depended on HP, r_0 , C_s , and σ_i .
- ✓ It is possible to reduce the defect risk of 10 nm half-pitch to current 16 nm level.
- ✓ The control of interaction between resist and underlayer in the developer is important for the suppression of stochastic bridging.